Skip to main content

The Connectivity of Large Genetic Networks

Design, History, or Mere Chemistry?

  • Chapter
Power Laws, Scale-Free Networks and Genome Biology

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 943 Accesses

Abstract

I review evolutionary explanations of broad-tailed connectivity or degree distributions observed in metabolic networks and protein interaction networks. Self-assembled chemical reaction networks show degree distributions similar to those observed for metabolic networks, which argues against the postulated role of natural selection in maintaining this degree distribution. In addition, metabolic networks contain traces of their ancient history in the form of highly connected metabolites. Similarly to the degree distribution of metabolic networks, that of protein interaction networks can be explained without resorting to natural selection on the network level. I present data suggesting that highly connected proteins are not distinguishably older than other proteins, and explain this finding with a simple model of how a proteins degree changes in evolutionary time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rzhetsky A, Gomez SM. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics 2001; 17(10):988–996.

    Article  Google Scholar 

  2. Wuchty S. Scale-free behavior in protein domain networks. Mol Biol Evol 2001; 18(9):1694–1702.

    Google Scholar 

  3. Wuchty S. Interaction and domain networks of yeast. Proteomics 2002; 2(12):1715–1723.

    Article  Google Scholar 

  4. Koonin E, Wolf Y, Karev G. The structure of the protein universe and genome evolution. Nature 2002; 420(6912):218–223.

    Article  ADS  Google Scholar 

  5. Branden C, Tooze J. Introduction to protein structure. New York: Garland, 1999.

    Google Scholar 

  6. Nagano N, Orengo C, Thornton J. One fold with many functions: The evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 2002; 321(5):741–765.

    Article  Google Scholar 

  7. Li W-H. Molecular Evolution Massachusetts: Sinauer, 1997.

    Google Scholar 

  8. Bornberg-Bauer E. How are model protein structures distributed in sequence space? Biophys J 1997; 73(5):2393–2403.

    Article  Google Scholar 

  9. Barabasi A-L, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A 1999; 272(1–2):173–187.

    Article  ADS  Google Scholar 

  10. Albert R, Barabasi A-L. Statistical mechanics of complex networks. Reviews of Modern Physics 2002; 47(1):47–94

    Article  ADS  MathSciNet  Google Scholar 

  11. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature 2000; 406(6794):378–382.

    Article  ADS  Google Scholar 

  12. Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. Nature 2000; 407:651–654.

    Article  ADS  Google Scholar 

  13. Jeong H, Mason SP, Barabasi A-L et al. Lethality and centrality in protein networks. Nature 2001; 411:41–42.

    Article  ADS  Google Scholar 

  14. Wagner A, Fell D. The small world inside large metabolic networks. Proc Roy Soc London Ser B 2001; 280:1803–1810.

    Article  Google Scholar 

  15. Fell D, Wagner A. The small world of metabolism. Nat Biotechnol 2000; 18:1121–1122.

    Article  Google Scholar 

  16. Cascante M, Melendez-Hevia E, Kholodenko BN et al. Control analysis of transit—time for free and enzyme—bound metabolites-physiological and evolutionary significance of metabolic response—times. Biochem J 1995; 308:895–899.

    Google Scholar 

  17. Easterby JS. The effect of feedback on pathway transient response. Biochem J 1986; 233:871–875.

    Google Scholar 

  18. Schuster S, Heinrich R. Time hierarchy in enzymatic-reaction chains resulting from optimality principles. J Theor Biol 1987; 129(2):189–209.

    Article  MathSciNet  Google Scholar 

  19. Gleiss PM, Stadler PF, Wagner A et al. Small cycles in small worlds. Advances in Complex Systems 2001; 4:207–226.

    Article  MATH  MathSciNet  Google Scholar 

  20. Benner SA, Ellington AD, Tauer A. Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 1989; 86:7054–7058.

    Article  ADS  Google Scholar 

  21. Wachtershauser G. Before enzymes and templates: Theory of surface metabolism. Microbiol Rev 1988; 52:452–484.

    Google Scholar 

  22. Kuhn H, Waser J. On the origin of the genetic code. FEBS letters 1994; 352:259–264.

    Article  Google Scholar 

  23. Morowitz HJ. Beginnings of Cellular Life. New Haven: Yale University Press, 1992.

    Google Scholar 

  24. Taylor BL, Coates D. The code within the codons. Biosystems 1989; 22:177–187.

    Article  Google Scholar 

  25. Waddell TG, Bruce GK. A new theory on the origin and evolution of the citric acid cycle. Microbiologia Sem 1995; 11:243–250.

    Google Scholar 

  26. Lahav N. Biogenesis. New York: Oxford University Press, 1999.

    Google Scholar 

  27. Giaever G, Chu AM, Ni L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418(6896):387–391.

    Article  ADS  Google Scholar 

  28. Steinmetz L, Scharfe C, Deutschbauer A et al. Systematic screen for human disease genes in yeast. Nat Genet 2002; 31(4):400–404.

    Google Scholar 

  29. Winzeler EA, Shoemaker DD, Astromoff A et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999; 285(#5429):901–906.

    Article  Google Scholar 

  30. Hahn M, Conant GC, Wagner A. Molecular evolution in large genetic networks: Does connectivity equal constraint? J Mol Evol. 2004; 58(2):203–11.

    Article  Google Scholar 

  31. Fraser HB, Wall DP, Hirsh AE. A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 2003; 3:11.

    Article  Google Scholar 

  32. Jordan IK, Wolf YI, Koonin EV. No simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors tend to evolve slowly. BMC Evol Biol 2003; 3:1.

    Article  MATH  Google Scholar 

  33. Jordan IK, Wolf YI, Koonin EV. Correction: No simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors evolve slowly. BMC Evol Biol 2003; 3:5.

    Article  Google Scholar 

  34. Wagner A. How large protein interaction networks evolve. Proc R Soc Lond B Biol Sci 2003; 270:457–466.

    Article  ADS  Google Scholar 

  35. Sole RV, Pastor-Satorras R, Smith ED et al. A model of large-scale proteome evolution. Advances in Complex Systems 2002; 5:43–54

    Article  MATH  Google Scholar 

  36. Albert R, Barabasi AL. Statistical mechanics of complex networks. Reviews of Modern Physics 2002; 74(1):47–97.

    Article  ADS  MathSciNet  Google Scholar 

  37. Altschul SF, Madden TL, Schaffer AA et al. Gapped blast and psi-blast: A new generation of protein database search programs. Nucleic Acids Res 1997; 25(17):3389–3402.

    Article  Google Scholar 

  38. Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403(6770):623–627.

    Article  ADS  Google Scholar 

  39. Mewes HW, Heumann K, Kaps A et al. MIPS: A database for genomes and protein sequences. Nucleic Acids Res 1999; 27:44–48.

    Article  Google Scholar 

  40. Karlin S. A first course in stochastic processes. New York: Academic Press, 1975.

    MATH  Google Scholar 

  41. Kulkarni VG. Modeling and analysis of stochastic systems. New York: Chapman & Hall, 1995.

    MATH  Google Scholar 

  42. Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001; 98(8):4569–4574.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Wagner, A. (2006). The Connectivity of Large Genetic Networks. In: Power Laws, Scale-Free Networks and Genome Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33916-7_4

Download citation

Publish with us

Policies and ethics