Skip to main content

Graphical Analysis of Biocomplex Networks and Transport Phenomena

  • Chapter
Power Laws, Scale-Free Networks and Genome Biology

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 946 Accesses

Abstract

Many biocomplex networks such as the protein interaction networks and the metabolic networks exhibit an emerging pattern that the distribution of the number of connections of a protein or substrate follows a power law. As the network theory is developed recently, several quantities describing network structure such as modularity and degree-degree correlation have been introduced. Here we investigate and compare the structural properties of the yeast protein networks for different datasets with those quantities. More-over, we introduce a new quantity, called the load, characterizing the amount of signal passing through a vertex. It is shown that the load distribution also follows a power law, and its characteristics are related to the structure of the core part of the biocomplex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ziemelis K, Allen L. Complex systems, and following review articles on complex systems. Nature 2001; 410:241.

    Article  Google Scholar 

  2. Gallagher R, Appenzeller T. Complex systems, and following viewpoint articles on complex systems. Science 1999; 284:87.

    Article  ADS  Google Scholar 

  3. Strogatz SH. Exploring complex networks. Nature 2001; 410:268–276.

    Article  ADS  Google Scholar 

  4. Dorogovtsev SN, Mendes JFF. Evolution of networks. Oxford: Oxford University Press, 2003.

    Book  MATH  Google Scholar 

  5. Newman MEJ. The structure and function of complex networks. SLAM Rev 2003; 45:167.

    Article  MATH  Google Scholar 

  6. Gavin AC et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415:141–147.

    Article  ADS  Google Scholar 

  7. Marcotte EM et al. A combined algorithm for genome-wide prediction of protein function. Nature 1999; 402:83–86.

    Article  ADS  Google Scholar 

  8. Uetz P et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403:623–627.

    Article  ADS  Google Scholar 

  9. Erdos P, Rényi A. On the evolution of random graph. Publ Math Inst Hung Acad Sci Ser A 1960; 5:17.

    Google Scholar 

  10. Barabási A-L, Albert R, Jeong H. Mean-field theory of scale-free networks. Physica A 1999; 272:173.

    Article  ADS  Google Scholar 

  11. Albert R, Jeong H, Barabási A-L. Diameter of the world wide web. Nature 1999; 401:130–131.

    Article  ADS  Google Scholar 

  12. Huberman BA, Adamic LA. Growth dynamics of the world wide web. Nature 1999; 401:131.

    ADS  Google Scholar 

  13. Broder A et al. Graph structure of the world wide web. Computer Networks 2000; 33:309.

    Article  ADS  Google Scholar 

  14. Faloutsos M. Faloutsos P, Faloutsos C. On power-law relationship in the internet topology. Comput Commun Rev 1999; 29:251.

    Article  Google Scholar 

  15. Pastor-Satorras R, Vázquez A, Vespignani A. Dynamical and correlation properties of the Internet. Phys Rev Lett 2001; 87:258701.

    Article  ADS  Google Scholar 

  16. Goh K-I, Kahng B, Kim D. Fluctuation-driven dynamics of the Internet topology. Phys Rev Lett 2002; 88:108701.

    Article  ADS  Google Scholar 

  17. Redner S. How popular is your paper? Eur Phys J B 1998; 4:131.

    Article  ADS  Google Scholar 

  18. Newman MEJ. The structure of scientific collaboration. Proc Natl Acad Sci USA 2001; 98:404.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Barabási A-L, Jeong H, Ravasz R et al. On the topology of the scientific collaboration networks. Physica A 2002; 311:590–614.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Jeong H, Tombor B, Albert R et al. Large-scale organization of metabolic networks. Nature 2000; 407:651.

    Article  ADS  Google Scholar 

  21. Ravasz E et al. Hierachical organization of modularity in metabolic networks. Science 2002; 297:1551–1555.

    Article  ADS  Google Scholar 

  22. Ravasz E, Barabási A-L. Hierachical organization in complex networks. Phys Rev E 2003; 67:026112.

    Article  ADS  Google Scholar 

  23. Mews HW et al. MIPS: Analysis and annotation of proteins from whole genomes. Nud Acids Res 2004; 32:D41–D44.

    Article  Google Scholar 

  24. Salwinski L et al. The database of interacting proteins: 2004 update. Nucl Acids Res 2004; 32:D449–D451.

    Article  Google Scholar 

  25. Bader GD, Betel D, Hogue CW. BIND: The biomolecular interaction network database. Nucl Acids Res 2003; 31:248–250.

    Article  Google Scholar 

  26. Ito T et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001; 98:4569–4574.

    Article  ADS  Google Scholar 

  27. Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol 2000; 18:1257–1261.

    Article  Google Scholar 

  28. Tong AH et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002; 295:321–324.

    Article  ADS  Google Scholar 

  29. Ho Y et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002; 415:180–183.

    Article  ADS  Google Scholar 

  30. Jeong H et al. Lethality and centrality in protein networks. Nature 2001; 411:41–42.

    Article  ADS  MathSciNet  Google Scholar 

  31. Wagner A. How the global structure of protein interaction networks evolves. Proc R Soc Lond B 2003; 270:457–466.

    Article  Google Scholar 

  32. Newman MEJ. Assortative mixing in networks. Phys Rev Lett 2002; 89:208701.

    Article  ADS  Google Scholar 

  33. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 2002; 296:910–913.

    Article  ADS  Google Scholar 

  34. Goh K-I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys Rev Lett 2001; 87:278701.

    Article  ADS  Google Scholar 

  35. Freeman LC. A set of measure of centrality based on betweenness. Sociometry 1977; 40:35.

    Article  Google Scholar 

  36. Newman MEJ. Scientific collaboration networks II: Shortest paths, weighted networks, and centrality. Phys Rev E 2001; 64:016132.

    Article  ADS  Google Scholar 

  37. Brandes U. A faster algorithm for betweenness centrality. J Math Sociol 2001; 25:163.

    Article  MATH  Google Scholar 

  38. Goh K-I, Kahng B, Kim D. Packet transport and load distribution in scale-free network models. Physica A 2003; 318:72.

    Article  MATH  ADS  Google Scholar 

  39. Goh K-I, Oh E, Jeong H et al. Classification of scale-free networks. Proc Natl Acad Sci USA 2002; 99:12583.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Barabási A-L, Albert R. Emergence of scaling in random networks. Science 1999; 286:509.

    Article  MathSciNet  Google Scholar 

  41. Solé R, Pastor-Satorras R, Smith E et al. A model of large-scale proteome evolution. Adv Complex Syst 2002; 5:43.

    Article  MATH  Google Scholar 

  42. Meyer D. University of Oregon Route Views Archive Project 2001 (http://archive.routeviews.org).

    Google Scholar 

  43. Jung S, Kim S, Kahng B. Geometric fractal growth model for scale-free networks. Phys Rev E 2002; 65:056101.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungnam Kahng .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Goh, KI., Kahng, B., Kim, D. (2006). Graphical Analysis of Biocomplex Networks and Transport Phenomena. In: Power Laws, Scale-Free Networks and Genome Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33916-7_2

Download citation

Publish with us

Policies and ethics