Skip to main content

Involvement of Dendritic Cells in the Pathogenesis of Inflammatory Bowel Disease

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaisho T, Akira S. Regulation of dendritic cell function through toll-like receptors. Curr Mol Med 2003; 3(8):759–71.

    PubMed  CAS  Google Scholar 

  2. Honda K, Sakaguchi S, Nakajima C et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci USA 2003; 100(19):10872–7.

    PubMed  CAS  Google Scholar 

  3. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425(6957):516–21.

    PubMed  CAS  Google Scholar 

  4. Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767–811.

    PubMed  CAS  Google Scholar 

  5. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003; 3(12):984–93.

    PubMed  CAS  Google Scholar 

  6. Reis e Sousa C, Diebold SD, Edwards AD et al. Regulation of dendritic cell function by microbial stimuli. Pathol Biol (Paris) 2003; 51(2):67–8.

    PubMed  CAS  Google Scholar 

  7. Rescigno M. Dendritic cells and the complexity of microbial infection. Trends Microbiol 2002; 10(9):425–61.

    PubMed  CAS  Google Scholar 

  8. Wilson NS, El-Sukkari D, Villadangos JA. Dendritic cells constitutively present self antigens in their immature state in vivo, and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 2003.

    Google Scholar 

  9. Larsson M, Fonteneau JF, Bhardwaj N. Cross-presentation of cell-associated antigens by dendritic cells. Curr Top Microbiol Immunol 2003; 276:261–75.

    PubMed  CAS  Google Scholar 

  10. Belz GT, Carbone FR, Heath WR. Cross-presentation of antigens by dendritic cells. Crit Rev Immunol 2002; 22(5–6):439–48.

    PubMed  CAS  Google Scholar 

  11. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685–711.

    PubMed  CAS  Google Scholar 

  12. Ardavin C. Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 2003; 3(7):582–90.

    PubMed  CAS  Google Scholar 

  13. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002; 2(3):151–61.

    PubMed  CAS  Google Scholar 

  14. Wakkach A, Fournier N, Brun V et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18(5):605–17.

    PubMed  CAS  Google Scholar 

  15. Iwasaki A, Kelsall BL. Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer’s patch dendritic cells. J Immunol 2001; 166(8):4884–90.

    PubMed  CAS  Google Scholar 

  16. Iwasaki A, Kelsall BL. Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 2000; 191(8):1381–94.

    PubMed  CAS  Google Scholar 

  17. Nakano H, Yanagita M, Gunn MD. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001; 194(8):1171–8.

    PubMed  CAS  Google Scholar 

  18. Asselin-Paturel C, Brizard G, Pin JJ et al. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 2003; 171(12):6466–77.

    PubMed  CAS  Google Scholar 

  19. Asselin-Paturel C, Boonstra A, Dalod M et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2001; 2(12):1144–50.

    PubMed  CAS  Google Scholar 

  20. O’Keeffe M, Hochrein H, Vremec D et al. Mouse plasmacytoid cells: Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 2002; 196(10):1307–19.

    PubMed  Google Scholar 

  21. Martin P, Del Hoyo GM, Anjuere F et al. Characterization of a new subpopulation of mouse CD8alpha+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 2002; 100(2):383–90.

    PubMed  CAS  Google Scholar 

  22. Bilsborough J, George TC, Norment A et al. Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 2003; 108(4):481–92.

    PubMed  CAS  Google Scholar 

  23. Maldonado-Lopez R, De Smedt T, Michel P et al. CD8alpha+ and CD8alpha-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189(3):587–92.

    PubMed  CAS  Google Scholar 

  24. Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96(3):1036–41.

    PubMed  CAS  Google Scholar 

  25. Maldonado-Lopez R, Maliszewski C, Urbain J et al. Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(-) dendritic cells to prime Th1/Th2 cells in vivo. J Immunol 2001; 167(8):4345–50.

    PubMed  CAS  Google Scholar 

  26. Iyoda T, Shimoyama S, Liu K et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 2002; 195(10):1289–302.

    PubMed  CAS  Google Scholar 

  27. Liu K, Iyoda T, Saternus M et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002; 196(8):1091–7.

    PubMed  CAS  Google Scholar 

  28. den Haan JM, Lehar SM, Bevan MJ. CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000; 192(12):1685–96.

    Google Scholar 

  29. Belz GT, Behrens GM, Smith CM et al. The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 2002; 196(8):1099–104.

    PubMed  CAS  Google Scholar 

  30. Boonstra A, Asselin-Paturel C, Gilliet M et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: Dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 2003; 197(1):101–9.

    PubMed  CAS  Google Scholar 

  31. Mazzoni A, Segal DM. Controlling the toll road to dendritic cell polarization. J Leukoc Biol 2004.

    Google Scholar 

  32. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: A novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002; 195(2):221–31.

    PubMed  CAS  Google Scholar 

  33. Mayrhofer G, Pugh CW, Barclay AN. The distribution, ontogeny and origin in the rat of Ia-positive cells with dendritic morphology and of Ia antigen in epithelia, with special reference to the intestine. Eur J Immunol 1983; 13(2):112–22.

    PubMed  CAS  Google Scholar 

  34. Bland PW, Whiting CV. Differential control of major histocompatibility complex class II I-Ek alpha protein expression in the epithelium and in subsets of lamina propria antigen-presenting cells of the gut. Immunology 1993; 79(1):107–11.

    PubMed  CAS  Google Scholar 

  35. Sminia T, Janse EM, Wilders MM. Antigen-trapping cells in Peyer’s patches of the rat. Scand J Immunol 1982; 16(6):481–5.

    PubMed  CAS  Google Scholar 

  36. Wilders MM, Sminia T, Plesch BE et al. Large mononuclear Ia-positive veiled cells in Peyer’s patches. II. Localization in rat Peyer’s patches. Immunology 1983; 48(3):461–7.

    PubMed  CAS  Google Scholar 

  37. Wilders MM, Drexhage HA, Sminia T et al. Veiled cells in the gastrointestinal tract. Acta Chir Scand Suppl 1985; 525:93–111.

    PubMed  CAS  Google Scholar 

  38. Soesatyo M, Biewenga J, Kraal G et al. The localization of macrophage subsets and dendritic cells in the gastrointestinal tract of the mouse with special reference to the presence of high endothelial venules. An immuno-and enzyme-histochemical study. Cell Tissue Res 1990; 259(3):587–93.

    PubMed  CAS  Google Scholar 

  39. Sminia T, van der Ende MB. Macrophage subsets in the rat gut: An immunohistochemical and enzyme-histochemical study. Acta Histochem 1991; 90(1):43–50.

    PubMed  CAS  Google Scholar 

  40. Soesatyo M, van der Berg TK, van Rees EP et al. Ontogeny of reticulum cells in the rat intestine and their possible role in the development of the lymphoid microenvironment. Reg Immunol 1992; 4(1):46–52.

    PubMed  CAS  Google Scholar 

  41. Mahida YR, Patel S, Jewell DP. Mononuclear phagocyte system of human Peyer’s patches: An immunohistochemical study using monoclonal antibodies. Clin Exp Immunol 1989; 75(1):82–6.

    PubMed  CAS  Google Scholar 

  42. Nagura H, Ohtani H, Masuda T et al. HLA-DR expression on M cells overlying Peyer’s patches is a common feature of human small intestine. Acta Pathol Jpn 1991; 41(11):818–23.

    PubMed  CAS  Google Scholar 

  43. Pavli P, Woodhams CE, Doe WF et al. Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria. Immunology 1990; 70(1):40–7.

    PubMed  CAS  Google Scholar 

  44. Brandtzaeg P, Bjerke K. Immunomorphological characteristics of human Peyer’s patches. Digestion 1990; 46(Suppl 2):262–73.

    PubMed  Google Scholar 

  45. Bjerke K, Halstensen TS, Jahnsen F et al. Distribution of macrophages and granulocytes expressing L1 protein (calprotectin) in human Peyer’s patches compared with normal ileal lamina propria and mesenteric lymph nodes. Gut 1993; 34(10):1357–63.

    PubMed  CAS  Google Scholar 

  46. Pavli P, Hume DA, Van De Pol E et al. Dendritic cells, the major antigen-presenting cells of the human colonic lamina propria. Immunology 1993; 78(1):132–41.

    PubMed  CAS  Google Scholar 

  47. Maric I, Holt PG, Perdue MH et al. Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol 1996; 156(4):1408–14.

    PubMed  CAS  Google Scholar 

  48. Liu LM, MacPherson GG. Rat intestinal dendritic cells: Immunostimulatory potency and phenotypic characterization. Immunology 1995; 85(1):88–93.

    PubMed  CAS  Google Scholar 

  49. Pugh CW, MacPherson GG, Steer HW. Characterization of nonlymphoid cells derived from rat peripheral lymph. J Exp Med 1983; 157(6):1758–79.

    PubMed  CAS  Google Scholar 

  50. MacPherson GG. Properties of lymph-borne (veiled) dendritic cells in culture. I. Modulation of phenotype, survival and function: Partial dependence on GM-CSF. Immunology 1989; 68(1):102–7.

    PubMed  CAS  Google Scholar 

  51. MacPherson GG, Jenkins CD, Stein MJ et al. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J Immunol 1995; 154(3):1317–22.

    PubMed  CAS  Google Scholar 

  52. Liu LM, MacPherson GG. Lymph-borne (veiled) dendritic cells can acquire and present intestinally administered antigens. Immunology 1991; 73(3):281–6.

    PubMed  CAS  Google Scholar 

  53. Liu LM, MacPherson GG. Antigen acquisition by dendritic cells: Intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J Exp Med 1993; 177(5):1299–307.

    PubMed  CAS  Google Scholar 

  54. Spalding DM, Koopman WJ, Eldridge JH et al. Accessory cells in murine Peyer’s patch. I Identification and enrichment of a functional dendritic cell. J Exp Med 1983; 157(5):1646–59.

    PubMed  CAS  Google Scholar 

  55. Spencer J, Finn T, Isaacson PG. Human Peyer’s patches: An immunohistochemical study. Gut 1986; 27(4):405–10.

    PubMed  CAS  Google Scholar 

  56. Spalding DM, Williamson SI, Koopman WJ et al. Preferential induction of polyclonal IgA secretion by murine Peyer’s patch dendritic cell-T cell mixtures. J Exp Med 1984; 160(3):941–6.

    PubMed  CAS  Google Scholar 

  57. George A, Cebra JJ. Responses of single germinal-center B cells in T-cell-dependent microculture. Proc Natl Acad Sci USA 1991; 88(1):11–5.

    PubMed  CAS  Google Scholar 

  58. Witmer MD, Steinman RM. The anatomy of peripheral lymphoid organs with emphasis on accessory cells: Light-microscopic immunocytochemical studies of mouse spleen, lymph node, and Peyer’s patch. Am J Anat 1984; 170(3):465–81.

    PubMed  CAS  Google Scholar 

  59. Witmer-Pack MD, Hughes DA, Schuler G et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci 1993; 104 (Pt 4):1021–9.

    PubMed  Google Scholar 

  60. Kelsall BL, Strober W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J Exp Med 1996; 183(1):237–47.

    PubMed  CAS  Google Scholar 

  61. Ruedl C, Hubele S. Maturation of Peyer’s patch dendritic cells in vitro upon stimulation via cytokines or CD40 triggering. Eur J Immunol 1997; 27(6):1325–30.

    PubMed  CAS  Google Scholar 

  62. Ruedl C, Rieser C, Bock G et al. Phenotypic and functional characterization of CD11c+ dendritic cell population in mouse Peyer’s patches. Eur J Immunol 1996; 26(8):1801–6.

    PubMed  CAS  Google Scholar 

  63. Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002; 168:57–64.

    PubMed  CAS  Google Scholar 

  64. Mora JR, Bono MR, Manjunath N et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 2003; 424(6944):88–93.

    PubMed  CAS  Google Scholar 

  65. Iwasaki A, Kelsall BL. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 1999; 190(2):229–39.

    PubMed  CAS  Google Scholar 

  66. Everson MP, Lemak DG, McDuffie DS et al. Dendritic cells from Peyer’s patch and spleen induce different T helper cell responses. J Interferon Cytokine Res 1998; 18(2):103–15.

    PubMed  CAS  Google Scholar 

  67. Everson MP, McDuffie DS, Lemak DG et al. Dendritic cells from different tissues induce production of different T cell cytokine profiles. J Leukoc Biol 1996; 59(4):494–8.

    PubMed  CAS  Google Scholar 

  68. Williamson E, Bilsborough JM, Viney JL. Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: Impact on tolerance induction. J Immunol 2002; 169(7):3606–12.

    PubMed  CAS  Google Scholar 

  69. Jameson B, Baribaud F, Pohlmann S et al. Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol 2002; 76(4):1866–75.

    PubMed  CAS  Google Scholar 

  70. de Baey A, Mende I, Baretton G et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol 2003; 170(10):5089–94.

    PubMed  Google Scholar 

  71. Huang FP, Platt N, Wykes M et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000; 191(3):435–44.

    PubMed  CAS  Google Scholar 

  72. Alpan O, Rudomen G, Matzinger P. The role of dendritic cells, B cells, and M cells in gut-oriented immune responses. J Immunol 2001; 166(8):4843–52.

    PubMed  CAS  Google Scholar 

  73. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2(8):725–31.

    PubMed  CAS  Google Scholar 

  74. Stagg AJ, Kamm MA, Knight SC. Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur J Immunol 2002; 32(5):1445–54.

    PubMed  CAS  Google Scholar 

  75. Johansson-Lindbom B, Svensson M, Wurbel MA et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): Requirement for GALT dendritic cells and adjuvant. J Exp Med 2003; 198(6):963–9.

    PubMed  CAS  Google Scholar 

  76. Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2(4):361–7.

    PubMed  CAS  Google Scholar 

  77. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003; 3(4):331–41.

    PubMed  CAS  Google Scholar 

  78. Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003; 112(5):693–706.

    PubMed  CAS  Google Scholar 

  79. Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: Comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 1998; 115(6):1414–25.

    PubMed  CAS  Google Scholar 

  80. Bell SJ, Rigby R, English N et al. Migration and maturation of human colonic dendritic cells. J Immunol 2001; 166(8):4958–67.

    PubMed  CAS  Google Scholar 

  81. te Velde AA, van Kooyk Y, Braat H et al. Increased expression of DC-SIGN+IL-12+IL-18+ and CD83+IL-12-IL-18-dendritic cell populations in the colonic mucosa of patients with Crohn’s disease. Eur J Immunol 2003; 33(1):143–51.

    Google Scholar 

  82. Zhao X, Sato A, Dela Cruz CS et al. CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer’s patch CD11b+ dendritic cells. J Immunol 2003; 171(6):2797–803.

    PubMed  CAS  Google Scholar 

  83. Caux C, Vanbervliet B, Massacrier C et al. Regulation of dendritic cell recruitment by chemokines. Transplantation 2002; 73(1 Suppl):S7–11.

    PubMed  CAS  Google Scholar 

  84. Kunkel EJ, Campbell DJ, Butcher EC. Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation 2003; 10(3–4):313–23.

    PubMed  CAS  Google Scholar 

  85. Papadakis KA. Chemokines in inflammatory bowel disease. Curr Allergy Asthma Rep 2004; 4(1):83–9.

    PubMed  Google Scholar 

  86. Ajuebor MN, Swain MG. Role of chemokines and chemokine receptors in the gastrointestinal tract. Immunology 2002; 105(2):137–43.

    PubMed  CAS  Google Scholar 

  87. Izadpanah A, Dwinell MB, Eckmann L et al. Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: Mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 2001; 280(4):G710–9.

    PubMed  CAS  Google Scholar 

  88. Dieu MC, Vanbervliet B, Vicari A et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188(2):373–86.

    PubMed  CAS  Google Scholar 

  89. Sakaguchi S, Fukuma K, Kuribayashi K et al. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I evidence for the active participation of T cells in natural self-tolerance; Deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985; 161(1):72–87.

    PubMed  CAS  Google Scholar 

  90. Wu HY, Weiner HL. Oral tolerance. Immunol Res 2003; 28(3):265–84.

    PubMed  Google Scholar 

  91. Weiner HL. Oral tolerance: Immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 2001; 3(11):947–54.

    PubMed  CAS  Google Scholar 

  92. Didierlaurent A, Sirard JC, Kraehenbuhl JP et al. How the gut senses its content. Cell Microbiol 2002; 4(2):61–72.

    PubMed  CAS  Google Scholar 

  93. Barton GM, Medzhitov R. Toll-like receptors and their ligands. Curr Top Microbiol Immunol 2002; 270:81–92.

    PubMed  CAS  Google Scholar 

  94. Gewirtz AT. Intestinal epithelial toll-like receptors: To protect. And serve? Curr Pharm Des 2003; 9(1):1–5.

    PubMed  CAS  Google Scholar 

  95. Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest 1997; 100(1):6–10.

    PubMed  CAS  Google Scholar 

  96. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20:495–549.

    PubMed  CAS  Google Scholar 

  97. Uhlig HH, Powrie F. Dendritic cells and the intestinal bacterial flora: A role for localized mucosal immune responses. J Clin Invest 2003; 112(5):648–51.

    PubMed  CAS  Google Scholar 

  98. Malmstrom V, Shipton D, Singh B et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 2001; 166(11):6972–81.

    PubMed  CAS  Google Scholar 

  99. Mottet C, Uhlig HH, Powrie F. Cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003; 170:3939–43.

    PubMed  CAS  Google Scholar 

  100. Yamazaki S, Iyoda T, Tarbell K et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 2003; 198:235–47.

    PubMed  CAS  Google Scholar 

  101. Leithauser F, Trobonjaca Z, Moller P et al. Clustering of colonic lamina propria CD4(+) T cells to subepithelial dendritic cell aggregates precedes the development of colitis in a murine adoptive transfer model. Lab Invest 2001; 81(10):1339–49.

    PubMed  CAS  Google Scholar 

  102. Krajina T, Leithauser F, Moller P et al. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol 2003; 33(4):1073–83.

    PubMed  CAS  Google Scholar 

  103. Ashcroft AJ, Cruickshank SM, Croucher PI et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 2003; 19:849–61.

    PubMed  CAS  Google Scholar 

  104. Seldenrijk CA, Drexhage HA, Meuwissen SG et al. Dendritic cells and scavenger macrophages in chronic inflammatory bowel disease. Gut 1989; 30(4):486–91.

    Google Scholar 

  105. Oshitani N, Sawa Y, Hara J et al. Functional and phenotypical activation of leucocytes in inflamed human colonic mucosa. J Gastroenterol Hepatol 1997; 12(12):809–14.

    PubMed  CAS  Google Scholar 

  106. Waraich T, Sarsfield P, Wright DH. The accessory cell populations in ulcerative colitis: A comparison between the colon and appendix in colitis and acute appendicitis. Hum Pathol 1997; 28(3):297–303.

    PubMed  CAS  Google Scholar 

  107. Oshitani N, Kitano A, Kakazu T et al. Functional diversity of infiltrating macrophages in inflamed human colonic mucosa ulcerative colitis. Clin Exp Pharmacol Physiol 1998; 25(1):50–3.

    PubMed  CAS  Google Scholar 

  108. MacDonald TT. The mucosal immune system. Parasite Immunol 2003; 25(5):235–46.

    PubMed  CAS  Google Scholar 

  109. Stagg AJ, Hart AL, Knight SC et al. The dendritic cell: Its role in intestinal inflammation and relationship with gut bacteria. Gut 2003; 52(10):1522–9.

    PubMed  CAS  Google Scholar 

  110. Kaser A, Ludwiczek O, Holzmann S et al. Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol 2004; (24):74–85.

    PubMed  CAS  Google Scholar 

  111. Vuckovic S, Florin TH, Khalil D et al. CD40 and CD86 upregulation with divergent CMRF44 expression on blood dendritic cells in inflammatory bowel diseases. Am J Gastroenterol 2001; 96(10):2946–56.

    PubMed  CAS  Google Scholar 

  112. de Baey A, Mende I, Riethmueller G et al. Phenotype and function of human dendritic cells derived from M-DC8(+) monocytes. Eur J Immunol 2001; 31(6):1646–55.

    PubMed  Google Scholar 

  113. Murakami H, Akbar SM, Matsui H et al. Macrophage migration inhibitory factor activates antigen-presenting dendritic cells and induces inflammatory cytokines in ulcerative colitis. Clin Exp Immunol 2002; 128(3):504–10.

    PubMed  CAS  Google Scholar 

  114. Yeung MM, Melgar S, Baranov V et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: Immune cell phenotype and TcR-gammadelta expression. Gut 2000; 47:215–27.

    PubMed  CAS  Google Scholar 

  115. Ikeda Y, Akbar F, Matsui H et al. Characterization of antigen-presenting dendritic cells in the peripheral blood and colonic mucosa of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2001; 13(7):841–50.

    PubMed  CAS  Google Scholar 

  116. Christ AD, Stevens AC, Koeppen H et al. An interleukin 12-related cytokine is up-regulated in ulcerative colitis but not in Crohn’s disease. Gastroenterology 1998; 115:307–13.

    PubMed  CAS  Google Scholar 

  117. Nieuwenhuis EE, Neurath MF, Corazza N et al. Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice. Proc Natl Acad Sci USA 2002; 99:16951–6.

    PubMed  CAS  Google Scholar 

  118. Heller F, Fuss IJ, Nieuwenhuis EE et al. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002; 17:629–38.

    PubMed  CAS  Google Scholar 

  119. Fuss IJ, Heller F, Boirivant M et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 2004; 113:1490–7.

    PubMed  CAS  Google Scholar 

  120. Smith PD, Janoff EN, Mosteller-Barnum M et al. Isolation and purification of CD14-negative mucosal macrophages from normal human small intestine. J Immunoll Methods 1997; 202(1):1–11.

    CAS  Google Scholar 

  121. Smith PD, Smythies LE, Mosteller-Barnum M et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS-and IgA-mediated activities. J Immunol 2001; 167(5):2651–2656.

    PubMed  CAS  Google Scholar 

  122. Smythies LE, Sellers M, Clements RH et al. Human intestinal macrophages display profound inflammatory energy despite avid phagocytic and bacteriocidal activity. J Clin Invest 2005; In Press.

    Google Scholar 

  123. Grimm MC, Pavli P, Doe WF. Evidence for a CD14+ population of monocytes in inflammatory bowel disease mucosa implications for pathogenesis. Clin Expl Immunol 1995; 100(2):291–297.

    CAS  Google Scholar 

  124. Rogler G, Hausmann M, Vogl D et al. Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol 1998; 112(2):205–215.

    PubMed  CAS  Google Scholar 

  125. Hausmann M, Kiessling S, Mestermann S et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 2002; 122(7):1987–2000.

    PubMed  CAS  Google Scholar 

  126. Allison MC, Poulter LW. Changes in phenotypically distinct mucosal macrophage populations may be a prerequisite for the development of inflammatory bowel disease. Clin Exp Immunol 1991; 85(3):504–509.

    PubMed  CAS  Google Scholar 

  127. Burgio VT, Fais S, Boirivant M et al. Peripheral monocyte and naive T-cell recruitment and activation in Crohn’s disease. Gastroenterology 1995; 109(4):1029–1038.

    PubMed  CAS  Google Scholar 

  128. Mahida YR, Patel S, Gionchetti P et al. Macrophage subpopulations in lamina propria of normal and inflamed colon and terminal ileum. Gut 1989; 30(6):826–834.

    PubMed  CAS  Google Scholar 

  129. Rugtveit J, Brandtzaeg P, Halstensen TS et al. Increased macrophage subset in inflammatory bowel disease: Apparent recruitment from peripheral blood monocytes. Gut 1994; 35(5):669–674.

    PubMed  CAS  Google Scholar 

  130. Grimm MC, Pullman WE, Benner GM et al. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol Hepatol 1995; 10(4):387–395.

    PubMed  CAS  Google Scholar 

  131. Grip O, Janciauskiene S, Lindgren S. Macrophages in inflammatory bowel disease. Curr Drug Targets Inflamm Allergy 2003; 2(2):155–60.

    PubMed  CAS  Google Scholar 

  132. Lochner M, Forster I. Anti-interleukin-18 therapy in murine models of inflammatory bowel disease. Pathobiology 2002–2003; 70:164–9.

    PubMed  CAS  Google Scholar 

  133. Kanai T, Uraushihara K, Totsuka T et al. Macrophage-derived IL-18 targeting for the treatment of Crohn’s disease. Curr Drug Targets Inflamm Allergy 2003; 2:131–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Leon, F., Smythies, L.E., Smith, P.D., Kelsall, B.L. (2006). Involvement of Dendritic Cells in the Pathogenesis of Inflammatory Bowel Disease. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_8

Download citation

Publish with us

Policies and ethics