Skip to main content

Role of Mast Cells and Eosinophils in Neuroimmune Interactions Regulating Mucosal Inflammation in Inflammatory Bowel Disease

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downing JE, Miyan JA. Neural immunoregulation: Emerging roles for nerves in immune homeostasis and disease. Immunol Today 2000; 21:281–9.

    Article  PubMed  CAS  Google Scholar 

  2. Anisman H, Baines MG, Berczi I et al. Neuroimmune mechanisms in health and disease: 2. Disease. CMAJ 1996; 155:1075–82.

    PubMed  CAS  Google Scholar 

  3. Stead RH. Innervation of mucosal immune cells in the gastrointestinal tract. Reg Immunol 1992; 4:91–9.

    PubMed  CAS  Google Scholar 

  4. McKay DM, Bienenstock J. The interaction between mast cells and nerves in the gastrointestinal tract. Immunol Today 1994; 15:533–8.

    Article  PubMed  CAS  Google Scholar 

  5. Williams RM, Bienenstock J, Stead RH. Mast cells: The neuroimmune connection. Chem Immunol 1995; 61:208–35.

    Article  PubMed  CAS  Google Scholar 

  6. Bradding P, Okayama Y, Howarth PH et al. Heterogeneity of human mast cells based on cytokine content. J Immunol 1995; 155:297–307.

    PubMed  CAS  Google Scholar 

  7. Weidner N, Austen KF. Heterogenity of mast cells at multiple body sites. Path Res Pract 1993; 189:156–162.

    Article  PubMed  CAS  Google Scholar 

  8. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77:1033–1079.

    PubMed  CAS  Google Scholar 

  9. Bischoff SC, Wedemeyer J, Herrmann A et al. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 1996; 28:1–13.

    Article  PubMed  CAS  Google Scholar 

  10. Kato M, Kephart GM, Morikawa A et al. Eosinophil infiltration and degranulation in normal human tissues: Evidence for eosinophil degranulation in normal gastrointestinal tract. Int Arch Allergy Immunol 2001; 125(Suppl 1):55–8.

    Article  PubMed  Google Scholar 

  11. Weller PF. The immunobiology of eosinophils. N Engl J Med 1991; 324:1110–8.

    Article  PubMed  CAS  Google Scholar 

  12. Gelbmann CM, Mestermann S, Gross V et al. Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut 1999; 45:210–217.

    Article  PubMed  CAS  Google Scholar 

  13. Levi Schaffer F, Austen KF, Caulfield JP et al. Coculture of human lung-derived mast cells with mouse 3T3 fibroblasts: Morphology and IgE-mediated release of histamine, prostaglandin D2, and leukotrienes. J Immunol 1987; 139:494–500.

    PubMed  CAS  Google Scholar 

  14. Mierke CT, Ballmeier M, Werner U et al. Human endothelial cells regulate survival and proliferation of human mast cells. J Exp Med 2000; 192:801–811.

    Article  PubMed  CAS  Google Scholar 

  15. Bischoff SC, Schwengberg S, Raab R et al. Functional properties of human intestinal mast cells cultured in a new culture system: Enhancement of IgE receptor-dependent mediator release and response to stem cell factor. J Immunol 1997; 159:5560–5567.

    PubMed  CAS  Google Scholar 

  16. Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978; 52:447–52.

    PubMed  CAS  Google Scholar 

  17. Kitamura Y, Go S. Decreased production of mast cells in S1/S1d anemic mice. Blood 1979; 53:492–7.

    PubMed  CAS  Google Scholar 

  18. Longley Jr BJ Metcalfe DD Tharp M et al. Activating and dominant inactivating c-kit catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci USA 1999; 96:1609–14.

    Article  PubMed  CAS  Google Scholar 

  19. Lorentz A, Schuppan D, Gebert A et al. Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins. Blood 2002; 99:966–72.

    Article  PubMed  CAS  Google Scholar 

  20. Artis D, Humphreys NE, Potten CS et al. Beta7 integrin-deficient mice: Delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminth infection. Eur J Immunol 2000; 30:1656–64.

    Article  PubMed  CAS  Google Scholar 

  21. Gurish MF, Tao H, Abonia JP et al. Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med 2001; 194:1243–52.

    Article  PubMed  CAS  Google Scholar 

  22. Bischoff SC, Sellge G, Lorentz A et al. IL-4 enhances proliferation and mediator release in mature human mast cells. Proc Natl Acad Sci USA 1999; 96:8080–8085.

    Article  PubMed  CAS  Google Scholar 

  23. Gebhardt T, Sellge G, Lorentz A et al. Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. Eur J Immunol. 2002; 32:2308–16

    Article  PubMed  CAS  Google Scholar 

  24. Hartmann K, Henz BM, Kruger-Krasagakes S et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood 1997; 89:2863–70.

    PubMed  CAS  Google Scholar 

  25. Romagnani P, De Paulis A, Beltrame C et al. Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am J Pathol 1999; 155:1195–204.

    Article  PubMed  CAS  Google Scholar 

  26. Olsson N, Piek E, ten Dijke P et al. Human mast cell migration in response to members of the transforming growth factor-beta family. J Leukoc Biol 2000; 67:350–6.

    PubMed  CAS  Google Scholar 

  27. Cyr MM, Denburg JA. Systemic aspects of allergic disease: The role of the bone marrow. Curr Opin Immunol 2001; 13:727–32.

    Article  PubMed  CAS  Google Scholar 

  28. Alam R, Forsythe P, Stafford S et al. Transforming growth factor beta abrogates the effects of hematopoietins on eosinophils and induces their apoptosis. J Exp Med 1994; 179:1041–5.

    Article  PubMed  CAS  Google Scholar 

  29. Bochner BS, Schleimer RP. The role of adhesion molecules in human eosinophil and basophil recruitment. J Allergy Clin Immunol 1994; 94:427–38.

    Article  PubMed  CAS  Google Scholar 

  30. Rothenberg ME, Mishra A, Brandt EB et al. Gastrointestinal eosinophils in health and disease. Adv Immunol 2001; 78:291–328.

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Zepeda EA, Rothenberg ME, Ownbey RT et al. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 1996; 2:449–56.

    Article  PubMed  CAS  Google Scholar 

  32. Mishra A, Hogan SP, Lee JJ et al. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 1999; 103:1719–27.

    Article  PubMed  CAS  Google Scholar 

  33. Hogan SP, Mishra A, Brandt EB et al. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat Immunol 2001; 2:353–60.

    Article  PubMed  CAS  Google Scholar 

  34. Bischoff SC. Regulation and function of human intestinal mast cells. In: Marone G, Lichtenstein LM, Galli SJ, eds. Mast cells and basophils. London: Academic press, 2000:541–565.

    Chapter  Google Scholar 

  35. Jutel MT, Watanabe S, Klunker M et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413:420–425.

    Article  PubMed  CAS  Google Scholar 

  36. Hirai HK, Tanaka O, Yoshie K et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001; 193:255–61.

    Article  PubMed  CAS  Google Scholar 

  37. Lorentz A, Schwengberg S, Mierke C et al. Human intestinal mast cells produce IL-5 in vitro upon IgE receptor cross-linking and in vivo in the course of intestinal inflammatory disease. Eur J Immunol 1999; 29:1496–503.

    Article  PubMed  CAS  Google Scholar 

  38. Bischoff SC, Lorentz A, Schwengberg S et al. Mast cells are an important cellular source of tumour necrosis factor alpha in human intestinal tissue. Gut 1999; 44:643–652.

    Article  PubMed  CAS  Google Scholar 

  39. Lorentz A, Schwengberg S, Sellge G et al. Human intestinal mast cells are capable of producing different cytokine profiles: Role of IgE receptor cross-linking and IL-4. J Immunol 2000; 164:43–48.

    PubMed  CAS  Google Scholar 

  40. Kanbe NM, Kurosawa H, Nagata T et al. Production of fibrogenic cytokines by cord blood-derived cultured human mast cells. J Allergy Clin Immunol 2000; 106:85–90.

    Article  Google Scholar 

  41. Bacci S, Faussone-Pellegrini S, Mayer B et al. Distribution of mast cells in human ileocecal region. Dig Dis Sci 1995; 40:357–65.

    Article  PubMed  CAS  Google Scholar 

  42. Echtenacher BD, Mannel N, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 1996; 381:75–77.

    Article  PubMed  CAS  Google Scholar 

  43. Lawrence ID, Warner JA, Cohan VL et al. Purification and characterization of human skin mast cells. Evidence for human mast cell heterogeneity. J Immunol 1987; 139:3062–9.

    PubMed  CAS  Google Scholar 

  44. Lowman MA, Benyon RC, Church MK. Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells. Br J Pharmacol 1988; 95:121–30.

    Article  PubMed  CAS  Google Scholar 

  45. Bischoff SC, Schwengberg S, Wordelmann K et al. Effect of c-kit ligand, stem cell factor, on mediator release by human intestinal mast cells isolated from patients with inflammatory bowel disease and controls. Gut 1996; 38:104–111.

    Article  PubMed  CAS  Google Scholar 

  46. Jacoby DB, Gleich GJ, Fryer AD. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 1993; 91:1314–8.

    Article  PubMed  CAS  Google Scholar 

  47. Garland A, Necheles J, White SR et al. Activated eosinophils elicit substance P release from cultured dorsal root ganglion neurons. Am J Physiol 1997; 273:L1096–102.

    PubMed  CAS  Google Scholar 

  48. Lacy P, Moqbel R. Eosinophil cytokines. In: Marone G, ed. Human eosinophils. Biological and clinical aspects. Karger Basel, 2000:134–155.

    Chapter  Google Scholar 

  49. Bischoff SC, Nguyen QT, Mierke C et al. Transforming growth factor β production by eosinophils in human intestinal mucosa. Imunnology Letters 1999; 69:91, (Abstract).

    Google Scholar 

  50. Desreumaux P, Bloget F, Seguy D et al. Interleukin 3, granulocyte-macrophage colony-stimulating factor, and interleukin 5 in eosinophilic gastroenteritis. Gastroenterology 1996; 110:768–74.

    Article  PubMed  CAS  Google Scholar 

  51. Seegert D, Rosenstiel P, Pfahler H et al. Increased expression of IL-16 in inflammatory bowel disease. Gut 2001; 48(3):326–32.

    Article  PubMed  CAS  Google Scholar 

  52. Aliakbari J, Sreedharan SP, Turck CW et al. Selective localization of vasoactive intestinal peptide and substance P in human eosinophils. Biochem Biophys Res Commun 1987; 148:1440–5.

    Article  PubMed  CAS  Google Scholar 

  53. Metwali A, Blum AM, Ferraris L et al. Eosinophils within the healthy or inflamed human intestine produce substance and vasoactive intestinal peptide. J Neuroimmunol 1994; 52:69–78.

    Article  PubMed  CAS  Google Scholar 

  54. Church MK, Lichtenstein LM, Simon Hu et al. Effector cells of allergy. In Holgate ST, Church MK, Lichtenstein LM, eds. Allergy. London: Mosby, 2001; 303–324.

    Google Scholar 

  55. Raible DG, Schulman ES, DiMuzio J et al. Mast cell mediators prostaglandin-D2 and histamine activate human eosinophils. J Immunol 1992; 148:3536–42.

    PubMed  CAS  Google Scholar 

  56. Shi HZ, Humbles A, Gerard C et al. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest 2000; 105:945–53.

    Article  PubMed  CAS  Google Scholar 

  57. Villa I, Skokos D, Tkaczyk C et al. Capacity of mouse mast cells to prime T cells and to induce specific antibody responses in vivo. Immunology 2001; 102:165–72.

    Article  PubMed  CAS  Google Scholar 

  58. Woerly G, Roger N, Loiseau S et al. Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): Inhibition by immunoglobulin a complexes. J Exp Med 1999; 190:487–95.

    Article  PubMed  CAS  Google Scholar 

  59. Dimitriadou V, Mecheri S, Koutsilieris M et al. Expression of functional major histocompatibility complex class II molecules on HMC-1 human mast cells. J Leukoc Biol 1998; 64:791–9.

    PubMed  CAS  Google Scholar 

  60. Wershil BK. Role of mast cells and basophils in gastrointestinal inflammation. Chem Immunol 1995; 62:187–203.

    Article  PubMed  CAS  Google Scholar 

  61. Fiocchi C. Inflammatory bowel disease: Etiology and Pathogenesis. Gastroenterology 1998; 115:182–205.

    Article  PubMed  CAS  Google Scholar 

  62. Dvorak AM, Monahan RA, Osage JE et al. Crohn’s disease: Transmission electron microscopic studies. II. Immunologic inflammatory response. Alterations of mast cells, basophils, eosinophils, and the microvasculature. Hum Pathol 1980; 11:606–19.

    Article  PubMed  CAS  Google Scholar 

  63. Willoughby CP, Piris J, Truelove SC. Tissue eosinophils in ulcerative colitis. Scand J Gastroenterol 1979; 14:395–9.

    PubMed  CAS  Google Scholar 

  64. Sarin SK, Malhotra V, Sen Gupta S et al. Significance of eosinophil and mast cell counts in rectal mucosa in ulcerative colitis. A prospective controlled study. Dig Dis Sci 1987; 32:363–7.

    Article  PubMed  CAS  Google Scholar 

  65. Hallgren R, Colombel JF, Dahl R et al. Neutrophil and eosinophil involvement of the small bowel in patients with celiac disease and Crohn’s disease: Studies on the secretion rate and immunohistochemical localization of granulocyte granule constituents. Am J Med 1989; 86:56–64.

    Article  PubMed  CAS  Google Scholar 

  66. Raab Y, Fredens K, Gerdin B et al. Eosinophil activation in ulcerative colitis: Studies on mucosal release and localization of eosinophil granule constituents. Dig Dis Sci 1998; 43:1061–70.

    Article  PubMed  CAS  Google Scholar 

  67. Jeziorska M, Haboubi N, Schofield P et al. Distribution and activation of eosinophils in inflammatory bowel disease using an improved immunohistochemical technique. J Pathol 2001; 194:484–92.

    Article  PubMed  CAS  Google Scholar 

  68. Berstad A, Borkje B, Riedel B et al. Increased fecal eosinophil cationic protein in inflammatory bowel disease. Hepatogastroenterology 1993; 40:276–8.

    PubMed  CAS  Google Scholar 

  69. Levy AM, Gleich GJ, Sandborn WJ et al. Increased eosinophil granule proteins in gut lavage fluid from patients with inflammatory bowel disease. Mayo Clin Proc 1997; 72:117–23.

    Article  PubMed  CAS  Google Scholar 

  70. Luck W, Becker M, Niggemann B et al. In vitro release of eosinophil cationic protein from peripheral eosinophils reflects disease activity in childhood Crohn disease and ulcerative colitis. Eur J Pediatr 1997; 156:921–4.

    Article  PubMed  CAS  Google Scholar 

  71. Bischoff SC, Grabowsky J, Manns MP. Quantification of inflammatory mediators in stool samples of patients with inflammatory bowel disorders and controls. Dig Dis Sci 1997; 42:394–403.

    Article  PubMed  CAS  Google Scholar 

  72. Troncone R, Caputo N, Esposito V et al. Increased concentrations of eosinophilic cationic protein in whole-gut lavage fluid from children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1999; 28:164–8.

    Article  PubMed  CAS  Google Scholar 

  73. Bischoff SC, Mayer J, Nguyen QT et al. Immunnohistological assessment of intestinal eosinophil activation in patients with eosinophilic gastroenteritis and inflammatory bowel disease. Am J Gastroenterol 1999; 94:3396–9.

    Article  Google Scholar 

  74. Carlson M, Raab Y, Peterson C et al. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am J Gastroenterol 1999; 94:1876–83.

    Article  PubMed  CAS  Google Scholar 

  75. Saitoh O, Kojima K, Sugi K et al. Fecal eosinophil granule-derived proteins reflect disease activity in inflammatory bowel disease. Am J Gastroenterol 1999; 94:3513–20.

    Article  PubMed  CAS  Google Scholar 

  76. Pronk-Admiraal CJ, Linskens RK, Van Bodegraven AA et al. Serum eosinophil cationic protein in active and quiescent ulcerative colitis. Clin Chem Lab Med 2000; 38:619–22.

    Article  PubMed  CAS  Google Scholar 

  77. Winterkamp S, Raithel M, Hahn EG. Secretion and tissue content of eosinophil cationic protein in Crohn’s disease. J Clin Gastroenterol 2000; 30:170–5.

    Article  PubMed  CAS  Google Scholar 

  78. Lloyd G, Green FH, Fox H et al. Mast cells and immunoglobulin E in inflammatory bowel disease. Gut 1975; 16:861–66.

    Article  PubMed  CAS  Google Scholar 

  79. Sanderson IR, Leung KB, Pearce FL et al. Lamina propria mast cells in biopsies from children with Crohn’s disease. J Clin Pathol 1986; 39:279–83.

    Article  PubMed  CAS  Google Scholar 

  80. Balazs M, Illyes G, Vadasz G. Mast cells in ulcerative colitis. Quantitative and ultrastructural studies. Virchows Arch B Cell Pathol Incl Mol Pathol 1989; 57:353–60.

    Article  PubMed  CAS  Google Scholar 

  81. Nolte H, Spjeldnaes N, Kruse A et al. Histamine release from gut mast cells from patients with inflammatory bowel diseases. Gut 1990; 31:791–4.

    Article  PubMed  CAS  Google Scholar 

  82. King T, Biddle W, Bhatia P et al. Colonic mucosal mast cell distribution at line of demarcation of active ulcerative colitis. Dig Dis Sci 1992; 37:490–5.

    Article  PubMed  CAS  Google Scholar 

  83. Dvorak AM, McLeod RS, Onderdonk A et al. Ultrastructural evidence for piecemeal and anaphylactic degranulation of human gut mucosal mast cells in vivo. Int Arch Allergy Immunol 1992; 99:74–83.

    Article  PubMed  CAS  Google Scholar 

  84. Araki Y, Kakegawa T, Stadil F. Mast cells and histamine release in Crohn’s disease. Kurume Med J 1993; 40:93–9.

    Article  PubMed  CAS  Google Scholar 

  85. Knutson L, Ahrenstedt O, Odlind B et al. The jejunal secretion of histamine is increased in active Crohn’s disease. Gastroenterology 1990; 98:849–54.

    Article  PubMed  CAS  Google Scholar 

  86. Raithel M, Matek M, Baenkler HW et al. Mucosal histamine content and histamine secretion in Crohn’s disease, ulcerative colitis and allergic enteropathy. Int Arch Allergy Immunol 1995; 108:127–33.

    Article  PubMed  CAS  Google Scholar 

  87. Weidenhiller M, Raithel M, Winterkamp S et al. Methylhistamine in Crohn’s disease (CD): Increased production and elevated urine excretion correlates with disease activity. Inflamm Res 2000; 49:S35–6.

    Article  PubMed  CAS  Google Scholar 

  88. Raithel M, Schneider HT, Hahn EG. Effect of substance P on histamine secretion from gut mucosa in inflammatory bowel disease. Scand J Gastroenterol 1999; 34:496–503.

    Article  PubMed  CAS  Google Scholar 

  89. Raithel M, Winterkamp S, Pacurar A et al. Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease. Scand J Gastroenterol 2001; 36:174–9.

    Article  PubMed  CAS  Google Scholar 

  90. Fox CC, Lazenby AJ, Moore WC et al. Enhancement of human intestinal mast cell mediator release in active ulcerative colitis. Gastroenterology 1990; 99:119–24.

    PubMed  CAS  Google Scholar 

  91. Funakoshi K, Sugimura K, Anezaki K et al. Spectrum of cytokine gene expression in intestinal mucosal lesions of Crohn’s disease and ulcerative colitis. Digestion 1998; 59:73–8.

    Article  PubMed  CAS  Google Scholar 

  92. Briskin M, Winsor-Hines D, Shyjan A et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997; 151:97–110.

    PubMed  CAS  Google Scholar 

  93. Dubucquoi S, Janin A, Klein O et al. Activated eosinophils and interleukin 5 expression in early recurrence of Crohn’s disease. Gut 1995; 37:242–6.

    Article  PubMed  CAS  Google Scholar 

  94. Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157:1261–70.

    PubMed  CAS  Google Scholar 

  95. Desreumaux P, Brandt E, Gambiez L et al. Distinct cytokine patterns in early and chronic ileal lesions of Crohn’s disease. Gastroenterology 1997; 113:118–26.

    Article  PubMed  CAS  Google Scholar 

  96. Mazzucchelli L, Hauser C, Zgraggen K et al. Differential in situ expression of the genes encoding the chemokines MCP-1 and RANTES in human inflammatory bowel disease. J Pathol 1996; 178:201–6.

    Article  PubMed  CAS  Google Scholar 

  97. Wedemeyer J, Lorentz A, Goke M et al. Enhanced production of monocyte chemotactic protein 3 in inflammatory bowel disease mucosa. Gut 1999; 44:629–35.

    Article  PubMed  CAS  Google Scholar 

  98. Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 1996; 110:975–84.

    Article  PubMed  CAS  Google Scholar 

  99. Xian CJ, Xu X, Mardell CE et al. Site-specific changes in transforming growth factor-alpha and-beta1 expression in colonic mucosa of adolescents with inflammatory bowel disease. Scand J Gastroenterol 1999; 34:591–600.

    Article  PubMed  CAS  Google Scholar 

  100. Monteleone G, Kumberova A, Croft NM et al. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest 2001; 108:601–9.

    PubMed  CAS  Google Scholar 

  101. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603–6.

    Article  PubMed  CAS  Google Scholar 

  102. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  103. Nagarajan RP, Chen F, Li W et al. Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB. Biochem J 2000; 348 (Pt 3):591–6.

    Article  PubMed  CAS  Google Scholar 

  104. Ogura Y, Inohara N, Benito A et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001; 276:4812–8.

    Article  PubMed  CAS  Google Scholar 

  105. Langley JN. The autonomic nervous system, Part 1. Cambridge: Heffner and Sons, 1921.

    Google Scholar 

  106. Wood JD, Alpers DH, Andrews PL. Fundamentals of neurogastroenterology. Gut 1999; 45:II6–II16.

    Article  PubMed  Google Scholar 

  107. Gershon MD. In The Second Brain. New York: Harper Collins, 1998:1–312.

    Google Scholar 

  108. Schemann M. Regulation of gastrointestinal functions by the enteric nervous system. Proc Soc Nutr Physiol 2001; 10:17–25.

    Google Scholar 

  109. Costa M, Brookes SJ, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut 2000; 47:iv15–9.

    PubMed  Google Scholar 

  110. Florenzano F, Bentivoglio M. Degranulation, density, and distribution of mast cells in the rat thalamus: A light and electron microscopic study in basal conditions and after intracerebroventricular administration of nerve growth factor. J Comp Neurol 2000; 424:651–69.

    Article  PubMed  CAS  Google Scholar 

  111. Heine H, Forster FJ. Relationships between mast cells and preterminal nerve fibers. Z Mikrosk Anat Forsch 1975; 89:934–7.

    PubMed  CAS  Google Scholar 

  112. Stach W. [Nerve plexuses of the duodenal villi. Light and electron microscopic studies]. Acta Anat 1973; 85:216–31.

    Article  PubMed  CAS  Google Scholar 

  113. Newson B, Dahlstrom A, Enerback L et al. Suggestive evidence for a direct innervation of mucosal mast cells. Neuroscience 1983; 10:565–70.

    Article  PubMed  CAS  Google Scholar 

  114. Stead RH, Tomioka M, Quinonez G et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci USA 1987; 84:2975–9.

    Article  PubMed  CAS  Google Scholar 

  115. Arizono N, Matsuda S, Hattori T et al. Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin. Similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria. Lab Invest 1990; 62:626–34.

    PubMed  CAS  Google Scholar 

  116. Williams RM, Berthoud HR, Stead RH. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation 1997; 4:266–70.

    PubMed  CAS  Google Scholar 

  117. Stead RH, Dixon MF, Bramwell NH et al. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 1989; 97:575–85.

    PubMed  CAS  Google Scholar 

  118. Costello RW, Schofield BH, Kephart GM et al. Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. Am J Physiol 1997; 273:L93–103.

    PubMed  CAS  Google Scholar 

  119. Johansson O, Liang Y, Marcusson JA et al. Eosinophil cationic protein-and eosinophil-derived neurotoxin/eosinophil protein X-immunoreactive eosinophils in prurigo nodularis. Arch Dermatol Res 2000; 292:371–8.

    Article  PubMed  CAS  Google Scholar 

  120. DeSchryver-Kecskemeti K, Clouse RE. Perineural and intraneural inflammatory infiltrates in the intestines of patients with systemic connective-tissue disease. Arch Pathol Lab Med 1989; 113:394–8.

    PubMed  CAS  Google Scholar 

  121. Thoenen H, Edgar D. Neurotrophic factors. Science 1985; 229:238–242.

    Article  PubMed  CAS  Google Scholar 

  122. Chalazonitis A, Pham TD, Rothman TP et al. Neurotrophin-3 is required for the survival-differentiation of subsets of developing enteric neurons. J Neurosci 2001; 21:5620–36

    PubMed  CAS  Google Scholar 

  123. Leon A, Buriani A, Dal Toso R et al. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 1994; 91:3739–43.

    Article  PubMed  CAS  Google Scholar 

  124. Tam SY, Tsai M, Yamaguchi M et al. Expression of functional TrkA receptor tyrosine kinase in the HMC-1 human mast cell line and in human mast cells. Blood 1997; 90:1807–20.

    PubMed  CAS  Google Scholar 

  125. Nilsson G, Forsberg-Nilsson K, Xiang Z et al. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol 1997; 27:2295–301.

    Article  PubMed  CAS  Google Scholar 

  126. Kobayashi H, Gleich GJ, Butterfield JH et al. Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood 2002; 99:2214–20.

    Article  PubMed  CAS  Google Scholar 

  127. Blennerhassett MG, Tomioka M, Bienenstock J. Formation of contacts between mast cells and sympathetic neurons in vitro. Cell Tissue Res 1991; 265:121–8.

    Article  PubMed  CAS  Google Scholar 

  128. Blennerhassett MG, Bienenstock J. Sympathetic nerve contact causes maturation of mast cells in vitro. J Neurobiol 1998; 35:173–82.

    Article  PubMed  CAS  Google Scholar 

  129. Blennerhassett MG, Janiszewski J, Bienenstock J. Sympathetic nerve contact alters membrane resistance of cells of the RBL-2H3 mucosal mast cell line. Am J Respir Cell Mol Biol 1992; 6:504–9.

    PubMed  CAS  Google Scholar 

  130. Suzuki R, Furuno T, McKay DM et al. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J Immunol 1999; 163:2410–5.

    PubMed  CAS  Google Scholar 

  131. Suzuki R, Furuno T, Teshima R et al. Bi-directional relationship of in vitro mast cell-nerve communication observed by confocal laser scanning microscopy. Biol Pharm Bull 2001; 24:291–4.

    Article  PubMed  CAS  Google Scholar 

  132. Marshall JS, Gauldie J, Nielsen L et al. Leukemia inhibitory factor production by rat mast cells. Eur J Immunol 1993; 23:2116–20.

    Article  PubMed  CAS  Google Scholar 

  133. Zheng X, Knight DA, Zhou D et al. Leukemia inhibitory factor is synthesized and released by human eosinophils and modulates activation state and chemotaxis. J Allergy Clin Immunol 1999; 104:136–44.

    Article  PubMed  CAS  Google Scholar 

  134. Yamamori T, Fukada K, Aebersold R et al. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 1989; 246:1412–6.

    Article  PubMed  CAS  Google Scholar 

  135. Mehler MF, Rozental R, Dougherty M et al. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 1993; 362:62–5.

    Article  PubMed  CAS  Google Scholar 

  136. Henz B, Hermes B, Welker P. Interactions between neurotrophins and mast cells. In: Marone G, Lichtenstein LM, Galli SJ, eds. Mast cells and basophils. London: Academic press, 2000:341–354.

    Chapter  Google Scholar 

  137. Bajetto A, Bonavia R, Barbero S et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 2001; 22:147–84.

    Article  PubMed  CAS  Google Scholar 

  138. Dunzendorfer S, Meierhofer C, Wiedermann CJ. Signaling in neuropeptide-induced migration of human eosinophils. J Leukoc Biol 1998; 64:828–34.

    PubMed  CAS  Google Scholar 

  139. Aloe L, Levi-Montalcini R. Mast cells increase in tissues of neonatal rats injected with the nerve growth factor. Brain Res 1977; 133:358–66.

    Article  PubMed  CAS  Google Scholar 

  140. Matsuda H, Kannan Y, Ushio H et al. Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 1991; 174:7–14.

    Article  PubMed  CAS  Google Scholar 

  141. Horigome K, Bullock ED, Johnson Jr EM. Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J Biol Chem 1994; 269:2695–702.

    PubMed  CAS  Google Scholar 

  142. Kawamoto K, Okada T, Kannan Y et al. Nerve growth factor prevents apoptosis of rat peritoneal mast cells through the trk proto-oncogene receptor. Blood 1995; 86:4638–44.

    PubMed  CAS  Google Scholar 

  143. Welker P, Grabbe J, Gibbs B et al. Nerve growth factor-beta induces mast-cell marker expression during in vitro culture of human umbilical cord blood cells. Immunology 2000; 99:418–26.

    Article  PubMed  CAS  Google Scholar 

  144. Kanbe N, Kurosawa M, Miyachi Y et al. Nerve growth factor prevents apoptosis of cord blood-derived human cultured mast cells synergistically with stem cell factor. Clin Exp Allergy 2000; 30:1113–20.

    Article  PubMed  CAS  Google Scholar 

  145. Sawada J, Itakura A, Tanaka A et al. Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signalling pathways. Blood 2000; 95:2052–8.

    PubMed  CAS  Google Scholar 

  146. Matsuda H, Coughlin MD, Bienenstock J et al. Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci USA 1988; 85:6508–12.

    Article  PubMed  CAS  Google Scholar 

  147. Hamada A, Watanabe N, Ohtomo H et al. Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br J Haematol 1996; 93:299–302.

    Article  PubMed  CAS  Google Scholar 

  148. Bruni A, Bigon E, Boarato E et al. Interaction between nerve growth factor and lysophosphatidylserine on rat peritoneal mast cells. FEBS Lett 1982; 138:190–2.

    Article  PubMed  CAS  Google Scholar 

  149. Purcell WM, Atterwill CK. Human placental mast cells as an in vitro model system in aspects of neuro-immunotoxicity testing. Hum Exp Toxicol 1994; 13:429–33.

    Article  PubMed  CAS  Google Scholar 

  150. Bullock ED, Johnson Jr EM. Nerve growth factor induces the expression of certain cytokine genes and bcl-2 in mast cells. Potential role in survival promotion. J Biol Chem 1996; 271:27500–8.

    Article  PubMed  CAS  Google Scholar 

  151. Marshall JS, Gomi K, Blennerhassett MG et al. Nerve growth factor modifies the expression of inflammatory cytokines by mast cells via a prostanoid-dependent mechanism. J Immunol 1999; 162:4271–6.

    PubMed  CAS  Google Scholar 

  152. Tomioka M, Stead RH, Nielsen L et al. Nerve growth factor enhances antigen and other secretagogue-induced histamine release from rat peritoneal mast cells in the absence of phosphatidylserine. J Allergy Clin Immunol 1988; 82:599–607.

    Article  PubMed  CAS  Google Scholar 

  153. Tada K, Murakami M, Kambe T et al. Induction of cyclooxygenase-2 by secretory phospholipases A2 in nerve growth factor-stimulated rat serosal mast cells is facilitated by interaction with fibroblasts and mediated by a mechanism independent of their enzymatic functions. J Immunol 1998; 161:5008–15.

    PubMed  CAS  Google Scholar 

  154. Solomon A, Aloe L, Pe’er J et al. Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol 1998; 102:454–60.

    Article  PubMed  CAS  Google Scholar 

  155. Purcell WM, Westgate C, Atterwill CK. Rat brain mast cells: An in vitro paradigm for assessing the toxic effects of neurotropic therapeutics. Neurotoxicology 1996; 17:845–50.

    PubMed  CAS  Google Scholar 

  156. Arzubiaga C, Morrow J, Roberts IInd LJ et al. Neuropeptide Y, a putative cotransmitter in noradrenergic neurons, induces mast cell degranulation but not prostaglandin D2 release. J Allergy Clin Immunol 1991; 87:88–93.

    Article  PubMed  CAS  Google Scholar 

  157. Shanahan F, Denburg JA, Fox J et al. Mast cell heterogeneity: Effects of neuroenteric peptides on histamine release. J Immunol 1985; 135:1331–7.

    PubMed  CAS  Google Scholar 

  158. Odum L, Petersen LJ, Skov PS et al. Pituitary adenylate cyclase activating polypeptide (PACAP) is localized in human dermal neurons and causes histamine release from skin mast cells. Inflamm Res 1998; 47:488–92.

    Article  PubMed  CAS  Google Scholar 

  159. Repke H, Bienert M. Mast cell activation-a receptor-independent mode of substance P action? FEBS Lett 1987; 221:236–40.

    Article  PubMed  CAS  Google Scholar 

  160. Church MK, Lowman MA, Robinson C et al. Interaction of neuropeptides with human mast cells. Int Arch Allergy Appl Immunol 1989; 88:70–8.

    Article  PubMed  CAS  Google Scholar 

  161. Cocchiara R, Lampiasi N, Albeggiani G et al. Mast cell production of TNF-alpha induced by substance P evidence for a modulatory role of substance P-antagonists. J Neuroimmunol 1999; 101:128–36.

    Article  PubMed  CAS  Google Scholar 

  162. Krumins SA, Broomfield CA. Evidence of NK1 and NK2 tachykinin receptors and their involvement in histamine release in a murine mast cell line. Neuropeptides 1992; 21:65–72.

    Article  PubMed  CAS  Google Scholar 

  163. Brooks AC, Whelan CJ. Reactive oxygen species generation by mast cells in response to substance P: A NK1-receptor-mediated event. Inflamm Res 1999; 48:S121.

    Article  PubMed  CAS  Google Scholar 

  164. Okada T, Hirayama Y, Kishi S et al. Functional neurokinin NK-1 receptor expression in rat peritoneal mast cells. Inflamm Res 1999; 48:274–9.

    Article  PubMed  CAS  Google Scholar 

  165. Manley HC, Haynes LW. Eosinophil chemotactic response to rat CGRP-1 is increased after exposure to trypsin or guinea-pig lung particulate fraction. Neuropeptides 1989; 13:29–34.

    Article  PubMed  CAS  Google Scholar 

  166. Kroegel C, Giembycz MA, Barnes PJ. Characterization of eosinophil cell activation by peptides. Differential effects of substance P, melittin, and FMET-Leu-Phe. J Immunol 1990; 145:2581–7.

    PubMed  CAS  Google Scholar 

  167. El-Shazly A, Ishikawa T. Novel cooperation between eotaxin and substance-P in inducing eosinophil-derived neurotoxin release. Mediators Inflamm 1999; 8:177–9.

    Article  PubMed  CAS  Google Scholar 

  168. Fantozzi R, Masini E, Blandina P et al. Release of histamine from rat mast cells by acetylcholine. Nature 1978; 273:473–4.

    Article  PubMed  CAS  Google Scholar 

  169. Blandina P, Fantozzi R, Mannaioni PF et al. Characteristics of histamine release evoked by acetylcholine in isolated rat mast cells. J Physiol 1980; 301:281–93.

    PubMed  CAS  Google Scholar 

  170. Kaliner M, Orange RP, Austen KF. Immunological release of histamine and slow reacting substance of anaphylaxis from human lung. J Exp Med 1972; 136:556–67.

    Article  PubMed  CAS  Google Scholar 

  171. Bani-Sacchi T, Barattini M, Bianchi S et al. The release of histamine by parasympathetic stimulation in guinea-pig auricle and rat ileum. J Physiol 1986; 371:29–43.

    PubMed  CAS  Google Scholar 

  172. Leff AR, Stimler NP, Munoz NM et al. Augmentation of respiratory mast cell secretion of histamine caused by vagus nerve stimulation during antigen challenge. J Immunol 1986; 136:1066–73.

    PubMed  CAS  Google Scholar 

  173. Dimitriadou V, Buzzi MG, Moskowitz MA et al. Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in tat dura mater mast cells. Neuroscience 1991; 44:97–112.

    Article  PubMed  CAS  Google Scholar 

  174. Masini E, Rucci L, Cirri-Borghi MB et al. Stimulation and resection of Vidian nerve in patients with chronic hypertrophic nonallergic rhinitis: Effect on histamine content in nasal mucosa. Agents Actions 1986; 18:251–3.

    Article  PubMed  CAS  Google Scholar 

  175. Rucci L, Masini E, Arbi Riccardi R et al. Vidian nerve resection, histamine turnover and mucosal mast cell function in patients with chronic hypertrophic nonallergic rhinitis. Agents Actions 1989; 28:224–30.

    Article  PubMed  CAS  Google Scholar 

  176. Ganguly AK, Sathiamoorthy SS, Bhatnagar OP. Effect of sub-diaphragmatic vagotomy on gastric mucosal mast cell population in pylorus ligated rats. Q J Exp Physiol Cogn Med Sci 1978; 63:89–92.

    PubMed  CAS  Google Scholar 

  177. Gottwald T, Lhotak S, Stead RH. Effects of truncal vagotomy and capsaicin on mast cells and IgA-positive plasma cells in rat jejunal mucosa. Neurogastroenterol Motil 1997; 9:25–32.

    Article  PubMed  CAS  Google Scholar 

  178. Kiernan JA. Effects of known and suspected neurotransmitter substances and of some nucleotides on isolated mast cells. Experientia 1972; 28:653–655.

    Article  PubMed  CAS  Google Scholar 

  179. Kazimmeierizak W, Diamant B. Mechanisms of histamine release in anaphylactic and anaphylactoid reactions. Prog Allergy 1978; 24:295–365.

    Google Scholar 

  180. Assem ES, Schild HO. Inhibition by sympathomimetic amines of histamine release by antigen in passively sensitized human lung. Nature 1969; 224:1028–9.

    Article  PubMed  CAS  Google Scholar 

  181. Assem ES. Adrenergic mechanisms and immediate-type allergy. Clin Allergy 1974; 4:185–94.

    Article  PubMed  CAS  Google Scholar 

  182. Soll AH, Toomey M. Beta-adrenergic and prostanoid inhibition of canine fundic mucosal mast cells. Am J Physiol 1989; 256:G727–32.

    PubMed  CAS  Google Scholar 

  183. Alm PE, Bloom GD. Effect of norepinephrine on in vitro histamine release from rat mast cells. Int Arch Allergy Appl Immunol 1979; 60:60–7.

    Article  PubMed  CAS  Google Scholar 

  184. Alm PE, Bloom GD. What-if any-is the role of adrenergic mechanisms in histamine release from mast cells? Agents Actions 1981; 11:60–6.

    Article  PubMed  CAS  Google Scholar 

  185. Befus AD, Dyck N, Goodacre R et al. Mast cells from the human intestinal lamina propria. Isolation, histochemical subtypes, and functional characterization. J Immunol 1987; 138:2604–10.

    PubMed  CAS  Google Scholar 

  186. Ferrante F, Ricci A, Felici L et al. Suggestive evidence for a functional association between mast cells and sympathetic nerves in menigeal membranes. Acta Histochem Cytochem 1990; 23:637–46.

    Article  Google Scholar 

  187. Bergerot A, Reynier-Rebuffel AM, Callebert J et al. Long-term superior cervical sympathectomy induces mast cell hyperplasia and increases histamine and serotonin content in the rat dura mater. Neuroscience 2000; 96:205–13.

    Article  PubMed  CAS  Google Scholar 

  188. Barnes PJ. Effect of beta-agonists on inflammatory cells. J Allergy Clin Immunol 1999; 104:S10–7.

    Article  PubMed  CAS  Google Scholar 

  189. Vergnolle N, Macnaughton WK, Al-Ani B et al. Proteinase-activated receptor 2 (PAR2)-activating peptides: Identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc Natl Acad Sci USA 1998; 95:7766–71.

    Article  PubMed  CAS  Google Scholar 

  190. Corvera CU, Dery O, McConalogue K et al. Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and-2. J Physiol 1999; 517:741–56.

    Article  PubMed  CAS  Google Scholar 

  191. de Garavilla L, Vergnolle N, Young SH et al. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br J Pharmacol 2001; 133:975–87.

    Article  PubMed  Google Scholar 

  192. Evans CM, Fryer AD, Jacoby DB et al. Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J Clin Invest 1997; 100:2254–62.

    Article  PubMed  CAS  Google Scholar 

  193. Lee LY, Gu Q, Gleich GJ. Effects of human eosinophil granule-derived cationic proteins on C-fiber afferents in the rat lung. J Appl Physiol 2001; 91:1318–26.

    PubMed  CAS  Google Scholar 

  194. Coyle AJ, Perretti F, Manzini S et al. Cationic protein-induced sensory nerve activation: Role of substance P in airway hyperresponsiveness and plasma protein extravasation. J Clin Invest 1994; 94:2301–6.

    Article  PubMed  CAS  Google Scholar 

  195. Fredens K, Dahl R, Venge P. The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol 1982; 70:361–6.

    Article  PubMed  CAS  Google Scholar 

  196. Dvorak AM. Ultrastructural evidence for release of major basic protein-containing crystalline cores of eosinophil granules in vivo: Cytotoxic potential in Crohn’s disease. J Immunol 1980; 125:460–2.

    PubMed  CAS  Google Scholar 

  197. Yu LC, Perdue MH. Role of mast cells in intestinal mucosal function: Studies in models of hypersensitivity and stress. Immunol Rev 2001; 179:61–73.

    Article  PubMed  CAS  Google Scholar 

  198. Perdue MH, Forstner JF, Roomi NW et al. Epithelial response to intestinal anaphylaxis in rats: Goblet cell secretion and enterocyte damage. Am J Physiol 1984; 247:G632–7.

    PubMed  CAS  Google Scholar 

  199. Perdue MH, Gall DG. Intestinal anaphylaxis in the rat: Jejunal response to in vitro antigen exposure. Am J Physiol 1986; 250:G427–31.

    PubMed  CAS  Google Scholar 

  200. Perdue MH, Masson S, Wershil BK et al. Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation. J Clin Invest 1991; 87:687–93.

    Article  PubMed  CAS  Google Scholar 

  201. Crowe SE, Sestini P, Perdue MH. Allergic reactions of rat jejunal mucosa. Ion transport responses to luminal antigen and inflammatory mediators. Gastroenterology 1990; 99:74–82.

    PubMed  CAS  Google Scholar 

  202. Castro GA, Harari Y, Russell D. Mediators of anaphylaxis-induced ion transport changes in small intestine. Am J Physiol 1987; 253:G540–8.

    PubMed  CAS  Google Scholar 

  203. Frieling T, Cooke HJ, Wood JD. Neuroimmune communication in the submucous plexus of guinea pig colon after sensitization to milk antigen. Am J Physiol 1994; 267:G1087–93.

    PubMed  CAS  Google Scholar 

  204. Wood JD. Histamine signals in enteric neuroimmune interactions. Ann NY Acad Sci 1992; 664:275–83.

    Article  PubMed  CAS  Google Scholar 

  205. Scott RB, Tan DT, Miampamba M et al. Anaphylaxis-induced alterations in intestinal motility: Role of extrinsic neural pathways. Am J Physiol 1998; 275:G812–21.

    PubMed  CAS  Google Scholar 

  206. Crowe SE, Perdue MH. Anti-immunoglobulin E-stimulated ion transport in human large and small intestine. Gastroenterology 1993; 105:764–72.

    PubMed  CAS  Google Scholar 

  207. Jiang W, Kreis ME, Eastwood C et al. 5-HT(3) and histamine H(1) receptors mediate afferent nerve sensitivity to intestinal anaphylaxis in rats. Gastroenterology 2000; 119:1267–75.

    Article  PubMed  CAS  Google Scholar 

  208. Riegler M, Castagliuolo I, So PT et al. Effects of substance P on human colonic mucosa in vitro. Am J Physiol 1999; 276:G1473–83.

    PubMed  CAS  Google Scholar 

  209. Crowe SE, Luthra GK, Perdue MH. Mast cell mediated ion transport in intestine from patients with and without inflammatory bowel disease. Gut 1997; 41:785–92.

    Article  PubMed  CAS  Google Scholar 

  210. Crowe SE, Soda K, Stanisz AM et al. Intestinal permeability in allergic rats: Nerve involvement in antigen-induced changes. Am J Physiol 1993; 264:G617–23.

    PubMed  CAS  Google Scholar 

  211. Berin MC, Kiliaan AJ, Yang PC et al. The influence of mast cells on pathways of transepithelial antigen transport in rat intestine. J Immunol 1998; 161:2561–6.

    PubMed  CAS  Google Scholar 

  212. Santos J, Yang PC, Soderholm JD et al. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001; 48:630–6.

    Article  PubMed  CAS  Google Scholar 

  213. Castagliuolo I, Wershil BK, Karalis K et al. Colonic mucin release in response to immobilization stress is mast cell dependent. Am J Physiol 1998; 274:G1094–1100.

    PubMed  CAS  Google Scholar 

  214. Pothoulakis C, Castagliuolo I, Leeman SE. Neuroimmune mechanisms of intestinal responses to stress. Role of corticotropin-releasing factor and neurotensin. Ann NY Acad Sci 1998; 840:635–48.

    Article  PubMed  CAS  Google Scholar 

  215. Kiliaan AJ, Saunders PR, Bijlsma PB et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol 1998; 275:G1037–44.

    PubMed  CAS  Google Scholar 

  216. Santos J, Saperas E, Nogueiras C et al. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 1998; 114:640–8.

    Article  PubMed  CAS  Google Scholar 

  217. MacQueen G, Marshall J, Perdue M et al. Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease II. Science 1989; 243:83–5.

    Article  PubMed  CAS  Google Scholar 

  218. Matsumoto I, Inoue Y, Shimada T et al. Brain mast cells act as an immune gate to the hypothalamic-pituitary-adrenal axis in dogs. J Exp Med 2001; 194:71–8.

    Article  PubMed  CAS  Google Scholar 

  219. Undem BJ, Kajekar R, Myers AC. Modulation of peripheral neurotransmission associated with mast cell activation. In: Marone G, Lichtenstein LM, Galli SJ, eds. Mast cells and basophils. London: Academic press, 2000:355–366.

    Chapter  Google Scholar 

  220. Stead RH. Nerve remodelling during intestinal inflammation. Ann NY Acad Sci 1992; 664:443–55.

    Article  PubMed  CAS  Google Scholar 

  221. Collins SM, Hurst SM, Main C et al. Effect of inflammation of enteric nerves. Cytokine-induced changes in neurotransmitter content and release. Ann NY Acad Sci 1992; 664:415–24.

    Article  PubMed  CAS  Google Scholar 

  222. Xia Y, Hu HZ, Liu S et al. IL-1beta and IL-6 excite neurons and suppress nicotinic and noradrenergic neurotransmission in guinea pig enteric nervous system. J Clin Invest 1999; 103:1309–16.

    Article  PubMed  CAS  Google Scholar 

  223. Dvorak AM, Silen W. Differentiation between Crohn’s disease and other inflammatory conditions by electron microscopy. Ann Surg 1985; 201:53–63.

    PubMed  CAS  Google Scholar 

  224. Steinhoff MM, Kodner IJ, DeSchryver-Kecskemeti K. Axonal degeneration/necrosis: A possible ultrastructural marker for Crohn’s disease. Mod Pathol 1988; 1:182–7.

    PubMed  CAS  Google Scholar 

  225. Kyosola K, Penttila O, Salaspuro M. Rectal mucosal adrenergic innervation and enterochromaffin cells in ulcerative colitis and irritable colon. Scand J Gastroenterol 1977; 12:363–7.

    Article  PubMed  CAS  Google Scholar 

  226. Rumessen JJ. Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative colitis. Gastroenterology 1996; 111:1447–55.

    Article  PubMed  CAS  Google Scholar 

  227. Porcher C, Baldo M, Henry M et al. Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn’s disease. Am J Gastroenterol 2002; 97:118–25.

    Article  PubMed  Google Scholar 

  228. Belai A, Boulos PB, Robson T et al. Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut 1997; 40:767–74.

    Article  PubMed  CAS  Google Scholar 

  229. Schneider J, Jehle EC, Starlinger MJ et al. Neurotransmitter coding of enteric neurones in the submucous plexus is changed in noninflamed rectum of patients with Crohn’s disease. Neurogastroenterol Motil 2001; 13:255–64.

    Article  PubMed  CAS  Google Scholar 

  230. Mazumdar S, Das KM. Immunocytochemical localization of vasoactive intestinal peptide and substance P in the colon from normal subjects and patients with inflammatory bowel disease. Am J Gastroenterol 1992; 87:176–81.

    PubMed  CAS  Google Scholar 

  231. Keranen U, Kiviluoto T, Jarvinen H et al. Changes in substance P-immunoreactive innervation of human colon associated with ulcerative colitis. Dig Dis Sci 1995; 40:2250–8.

    Article  PubMed  CAS  Google Scholar 

  232. Keranen U, Jarvinen H, Karkkainen P et al. Substance P-an underlying factor for pouchitis? Prospective study of substance P-and vasoactive intestinal polypeptide-immunoreactive innervation and mast cells. Dig Dis Sci 1996; 41:1665–71.

    Article  PubMed  CAS  Google Scholar 

  233. Keranen U, Jarvinen H, Kiviluoto T et al. Substance P and vasoactive intestinal polypeptide-immunoreactive innervation in normal and inflamed pouches after restorative proctocolectomy for ulcerative colitis. Dig Dis Sci 1996; 41:1658–64.

    Article  PubMed  CAS  Google Scholar 

  234. Watanabe T, Kubota Y, Muto T. Substance P containing nerve fibers in rectal mucosa of ulcerative colitis. Dis Colon Rectum 1997; 40:718–25.

    Article  PubMed  CAS  Google Scholar 

  235. Kimura M, Masuda T, Hiwatashi N et al. Changes in neuropeptide-containing nerves in human colonic mucosa with inflammatory bowel disease. Pathol Int 1994; 44:624–34.

    Article  PubMed  CAS  Google Scholar 

  236. Watanabe T, Kubota Y, Muto T. Substance P containing nerve fibers in ulcerative colitis. Int J Colorectal Dis 1998; 13:61–7.

    Article  PubMed  CAS  Google Scholar 

  237. Koch TR, Carney JA, Go VL. Distribution and quantitation of gut neuropeptides in normal intestine and inflammatory bowel diseases. Dig Dis Sci 1987; 32:369–76.

    Article  PubMed  CAS  Google Scholar 

  238. Goldin E, Karmeli F, Selinger Z et al. Colonic substance P levels are increased in ulcerative colitis and decreased in chronic severe constipation. Dig Dis Sci 1989; 34:754–7.

    Article  PubMed  CAS  Google Scholar 

  239. Bernstein CN, Robert ME, Eysselein VE. Rectal substance P concentrations are increased in ulcerative colitis but not in Crohn’s disease. Am J Gastroenterol 1993; 88:908–13.

    PubMed  CAS  Google Scholar 

  240. Mantyh CR, Gates TS, Zimmerman RP et al. Receptor binding sites for substance P, but not substance K or neuromedin K, are expressed in high concentrations by arterioles, venules, and lymph nodules in surgical specimens obtained from patients with ulcerative colitis and Crohn disease. Proc Natl Acad Sci USA 1988; 85:3235–9.

    Article  PubMed  CAS  Google Scholar 

  241. Tomita R, Tanjoh K, Fujisaki S et al. Peptidergic nerves in the colon of patients with ulcerative colitis. Hepatogastroenterology 2000; 47:400–4.

    PubMed  CAS  Google Scholar 

  242. Moriarty D, Goldhill J, Selve N et al. Human colonic anti-secretory activity of the potent NK(1) antagonist, SR140333: Assessment of potential anti-diarrhoeal activity in food allergy and inflammatory bowel disease. Br J Pharmacol 2001; 133:1346–54.

    Article  PubMed  CAS  Google Scholar 

  243. Koch TR, Carney JA, Go VL et al. Altered inhibitory innervation of circular smooth muscle in Crohn’s colitis. Association with decreased vasoactive intestinal polypeptide levels. Gastroenterology 1990; 98:1437–44.

    PubMed  CAS  Google Scholar 

  244. Kubota Y, Petras RE, Ottaway CA et al. Colonic vasoactive intestinal peptide nerves in inflammatory bowel disease. Gastroenterology 1992; 102:1242–51.

    PubMed  CAS  Google Scholar 

  245. Schulte-Bockholt A, Fink JG, Meier DA et al. Expression of mRNA for vasoactive intestinal peptide in normal human colon and during inflammation. Mol Cell Biochem 1995; 142:1–7.

    Article  PubMed  CAS  Google Scholar 

  246. O’Morain C, Bishop AE, McGregor GP et al. Vasoactive intestinal peptide concentrations and immunocytochemical studies in rectal biopsies from patients with inflammatory bowel disease. Gut 1984; 25:57–61.

    Article  PubMed  Google Scholar 

  247. Duffy LC, Zielezny MA, Riepenhoff-Talty M et al. Vasoactive intestinal peptide as a laboratory supplement to clinical activity index in inflammatory bowel disease. Dig Dis Sci 1989; 34:1528–35.

    Article  PubMed  CAS  Google Scholar 

  248. Todorovic V, Janic B, Koko V et al. Colonic vasoactive intestinal polypeptide (VIP) in ulcerative colitis a radioimmunoassay and immunohistochemical study. Hepatogastroenterology 1996; 43:483–8.

    PubMed  CAS  Google Scholar 

  249. Holzer P. Implications of tachykinins and calcitonin gene-related peptide in inflammatory bowel disease. Digestion 1998; 59:269–83.

    Article  PubMed  CAS  Google Scholar 

  250. Reubi JC, Mazzucchelli L, Laissue JA. Intestinal vessels express a high density of somatostatin receptors in human inflammatory bowel disease. Gastroenterology 1994; 106:951–9.

    PubMed  CAS  Google Scholar 

  251. Yamamoto H, Morise K, Kusugami K et al. Abnormal neuropeptide concentration in rectal mucosa of patients with inflammatory bowel disease. J Gastroenterol 1996; 31:525–32.

    Article  PubMed  CAS  Google Scholar 

  252. Cervero F. Visceral pain-central sensitisation. Gut 2000; 47:iv56–7.

    Article  PubMed  Google Scholar 

  253. Bueno L, Fioramonti J, Delvaux M et al. Mediators and pharmacology of visceral sensitivity: From basic to clinical investigations. Gastroenterology 1997; 112:1714–43.

    Article  PubMed  CAS  Google Scholar 

  254. Gebhart GF. Visceral pain-peripheral sensitisation. Gut 2000; 47:iv54–5.

    Article  PubMed  Google Scholar 

  255. Collins SM. The immunomodulation of enteric neuromuscular function: Implications for motility and inflammatory disorders. Gastroenterology 1996; 111:1683–99.

    Article  PubMed  CAS  Google Scholar 

  256. Farthing MJ, Lennard-jones JE. Sensibility of the rectum to distension and the anorectal distension reflex in ulcerative colitis. Gut 1978; 19:64–9.

    Article  PubMed  CAS  Google Scholar 

  257. Mayer EA, Raybould H, Koelbel C. Neuropeptides, inflammation, and motility. Dig Dis Sci 1988; 33:71S–77S.

    Article  PubMed  CAS  Google Scholar 

  258. Agro A, Stanisz AM. Inhibition of murine intestinal inflammation by anti-substance P antibody. Reg Immunol 1993; 5:120–6.

    PubMed  CAS  Google Scholar 

  259. Sonea IM, Palmer MV, Akili D et al. Treatment with neurokinin-1 receptor antagonist reduces severity of inflammatory bowel disease induced by cryptosporidium parvum. Clin Diagn Lab Immunol 2002; 9:333–40.

    PubMed  CAS  Google Scholar 

  260. Sturiale S, Barbara G, Qiu B et al. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P. Proc Natl Acad Sci USA 1999; 96:11653–8.

    Article  PubMed  CAS  Google Scholar 

  261. Shafiroff GP, Hinton J. Denervation of the pelvic colon for ulcerative colitis. Surg Forum 1950; 134–39.

    Google Scholar 

  262. Thorek P. Vagotomy for idiopathic ulcerative colitis and regional enteritis. JAMA 1951; 145:140–46.

    Article  CAS  Google Scholar 

  263. Kemler MA, Barendse GA, Van Kleef M. Relapsing ulcerative colitis associated with spinal cord stimulation. Gastroenterology 1999; 117:215–7.

    Article  PubMed  CAS  Google Scholar 

  264. Barbara G, De Giorgio R, Stanghellini V et al. Relapsing ulcerative colitis after spinal cord stimulation: A case of intestinal neurogenic inflammation? (letter) Gastroenterology 1999; 117:1256–1257.

    Article  PubMed  CAS  Google Scholar 

  265. Bjorck S, Dahlstrom A, Johansson L et al. Treatment of the mucosa with local anaesthetics in ulcerative colitis. Agents Actions 1992; C60–72.

    Google Scholar 

  266. McCafferty DM, Sharkey KA, Wallace JL. Beneficial effects of local or systemic lidocaine in experimental colitis. Am J Physiol 1994; 266:G560–7.

    PubMed  CAS  Google Scholar 

  267. Evangelista S, Meli A. Influence of capsaicin-sensitive fibres on experimentally-induced colitis in rats. J Pharm Pharmacol 1989; 41:574–5.

    Article  PubMed  CAS  Google Scholar 

  268. Eysselein VE, Reinshagen M, Patel A et al. Calcitonin gene-related peptide in inflammatory bowel disease and experimentally induced colitis. Ann NY Acad Sci 1992; 657:319–27.

    Article  PubMed  CAS  Google Scholar 

  269. Reinshagen M, Flamig G, Ernst S et al. Calcitonin gene-related peptide mediates the protective effect of sensory nerves in a model of colonic injury. J Pharmacol Exp Ther 1998; 286:657–61.

    PubMed  CAS  Google Scholar 

  270. di Mola FF, Friess H, Zhu ZW et al. Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut 2000; 46:670–9.

    Article  PubMed  Google Scholar 

  271. Magro F, Vieira-Coelho MA, Fraga S et al. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig Dis Sci 2002; 47:216–24.

    Article  PubMed  CAS  Google Scholar 

  272. Koch TR, Cave DR, Ford H et al. Histofluorescent and radioenzymatic analysis of colonic catecholamines in man. J Auton Nerv Syst 1984; 11:383–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Bischoff, S.C., Gebhardt, T. (2006). Role of Mast Cells and Eosinophils in Neuroimmune Interactions Regulating Mucosal Inflammation in Inflammatory Bowel Disease. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_12

Download citation

Publish with us

Policies and ethics