Advertisement

Cement in Primary Total Knee Arthroplasty

  • Alfred J. TriaJr

Keywords

Total Knee Arthroplasty Femoral Component Bone Cement Distal Femur Tibial Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verneuil AS. Affection articular du genou. Arch med. 1863.Google Scholar
  2. 2.
    Baer WS. Arthroplasty with the aid of animal membrane. Am J Orthop Surg. 1918; 16:1–29, 171–199.Google Scholar
  3. 3.
    Campbell WC. Arthroplasty of the knee: Report of cases. Am J Orthop Surg. 1921; 19:430–434.Google Scholar
  4. 4.
    Brown JE, McGaw WH, Shaw DT. Use of cutis as an interposing membrane in arthroplasty of the knee. JBJS. 1958; 40:1003–1018.Google Scholar
  5. 5.
    MacIntosh DL. Arthroplasty of the knee in rheumatoid arthritis (abstract). JBJS. 1966; 48:179.Google Scholar
  6. 6.
    Mazas FB, GUEPAR. GUEPAR total knee prosthesis. Clin Orthop. 1973; 94:211–221.PubMedGoogle Scholar
  7. 7.
    Charnley J. The reaction of bone to self-curing acrylic cement: a long-term histological study in man. J Bone Joint Surg. 1970; 52B:340–353.Google Scholar
  8. 8.
    Gunston FH. Polycentric knee arthroplasty: prosthetic simulation of normal knee movement. JBJS Br. 1971; 52:272–277.Google Scholar
  9. 9.
    Hansen D, Jensen JS. Prechilling and vacuum mixing not suitable for all bone cements. J Arthroplasty. 1990; 5:287–290.CrossRefPubMedGoogle Scholar
  10. 10.
    Bloch B, Haken JK, Hastings GW. Evaluation of cold curing acrylic cement for prosthesis stabilization. Clin Orthop. 1970; 72:239.PubMedGoogle Scholar
  11. 11.
    Wixson RL, Lautenschlager EP, Novak MA. Vacuum mixing of acrylic bone cement. J Arthroplasty. 1987; 2:141–149.CrossRefPubMedGoogle Scholar
  12. 12.
    Davies JP, O’Connor DO, Burke DW, Harrigan TP, Harris WH. The effect of centrifuging bone cement. J Bone Joint Surg. 1989; 71B:39–42.Google Scholar
  13. 13.
    Burke DW, Gates EI, Harris WH. Centrifugation as a method of improving tensile and fatigue properties of acrylic bone cement. J Bone Joint Surg. 1984; 66:1265–1273.PubMedGoogle Scholar
  14. 14.
    Lidgren L, Drar H, Moller J. Strength of polymethylmethacrylate increased by vacuum mixing. Acta Orthop Scand. 1984; 55:536.PubMedGoogle Scholar
  15. 15.
    Robinson RP, Wright TM, Burstein AH. Mechanical properties of polymethylmethacrylate bone cements. J Biomed Mater Res. 1981; 15:203.CrossRefPubMedGoogle Scholar
  16. 16.
    Miller J, Krause WR, Krug WH, Eng B, Kelebay L. Low voscosity cement. Clin Orthop. 1992; 276:4–6.PubMedGoogle Scholar
  17. 17.
    Ebramzadeh E, Sarmiento A, McKellop HA, Llinas A, Gogan W. The cement mantle in total hip arthroplasty. Analysis of long term radiographic results. J Bone Joint Surg. 1994; 76:77–87.PubMedGoogle Scholar
  18. 18.
    Homsy CA, Cain TE, Hessler FB, Anderson MS, King JW. Porous implant systems for prosthesis stabilization. Clin Orthop. 1972; 89:220–235.PubMedGoogle Scholar
  19. 19.
    Cook SD, Thomas KA, Haddad RJ. Histologic analysis of retrieved human porous-coated total joint components. Clin Orthop. 1988; 234:90–101.PubMedGoogle Scholar
  20. 20.
    Boss JH, Shajrawi I, Dekel S, Mendes DG. The bone cement interface: histological observations on the interface of cemented arthroplasties within the immediate and late phases. J Biomater Sci Polym Ed. 1993; 5:221–230.CrossRefPubMedGoogle Scholar
  21. 21.
    Jefferis CD, Lee AJC, Ling RS. Thermal aspects of selfcuring polymethylmethacrylate. J Bone Joint Surg. 1975; 57:511–518.Google Scholar
  22. 22.
    Dahl OE, Garvik LJ, Lyberg T. Toxic effects of methylmethacrylate monomer on leukocytes and endothelial cells in vitro. Acta Orthop Scand. 1994; 65:147–153.PubMedCrossRefGoogle Scholar
  23. 23.
    Toksvig-Larsen S, Ryd L, Lindstrand A. Temperature influence in different orthopaedic sawblades. J Arthroplasty. 1992; 7:21–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Schultz RJ, Johnston AD, Krishnamurthy S. Thermal effects of polymerization of methylmethacrylate on small tubular bones. Int Orthop 1987; 11:277–282.CrossRefPubMedGoogle Scholar
  25. 25.
    Swanson SAV, Freeman MAR. Methylmethacrylate as a bonding agent. In: The Scientific Basis of Joint Replacement. New York: Wiley and Sons; 1977:151–152.Google Scholar
  26. 26.
    Askew MJ, Kufel MF, Fleissner PR, Gradisar IA, Salstrom SJ, Tan JS. Effect of vacuum mixing on the mechanical properties of antibiotic impregnated polymethylmethacrylate bone cement. J Biomed Mater Res. 1990; 24:573–580.CrossRefPubMedGoogle Scholar
  27. 27.
    Scuderi GR, Insall JN, Windsor RE, Moran MC. Survivorship of cemented knee replacements. J Bone Joint Surg. 1989; 71:798–803.Google Scholar
  28. 28.
    Stern SH, Insall JN. Posterior stabilized prosthesis. Results after follow-up of nine to twelve years. J Bone Joint Surg. 1992; 74:980–986.PubMedGoogle Scholar
  29. 29.
    Moran CG, Pinder IM, Lees TA, Midwinter MJ. Survivorship analysis of the uncemented porous-coated anatomic knee replacement. J Bone Joint Surg. 1991; 73:848–857.PubMedGoogle Scholar
  30. 30.
    Whiteside LA. Cementless total knee replacement. Nine to 11 year results and 10 year survivorship analysis. Clin Orthop. 1994; 309:185–192.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Alfred J. TriaJr
    • 1
  1. 1.Robert Wood Johnson Medical SchoolOrthopaedic Center of New JerseySomersetUSA

Personalised recommendations