Advertisement

Streptococcus pneumoniae: Infection, Inflammation and Disease

  • Tim J. Mitchell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 582)

3. Conclusions

Streptococcus pneumoniae remains an important cause of morbidity and mortality in humans, especially young children. With the availability of bacterial genome sequences and other molecular biology approaches, understanding the interaction of this organism with its host is progressing at an increasing rate. The use of the information provided by these studies will make it easier to design new strategies for the treatment and prevention of the diseases caused by this important human pathogen.

Keywords

Streptococcus Pneumoniae Hemolytic Activity Conjugate Vaccine Invasive Pneumococcal Disease Pneumococcal Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcantara, R.B., Preheim, L.C., and Gentry, M.J. (1999) Role of pneumolysin’s complement-activating activity during pneumococcal bacteremia in cirrhotic rats. Infection and Immunity 67: 2862–2866.PubMedGoogle Scholar
  2. Alexander, J.E., Lock, R.A., Peeters, C.C., Poolman, J.T., Andrew, P.W., Mitchell, T.J., Hansman, D., and Paton, J.C. (1994) Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun 62: 5683–5688.PubMedGoogle Scholar
  3. Alpern, E.R., Alessandrini, E.A., McGowan, K.L., Bell, L.M., and Shaw, K.N. (2001) Serotype prevalence of occult pneumococcal bacteremia. Pediatrics 108: E23.PubMedCrossRefGoogle Scholar
  4. Auzat, I., Chapuy-Regaud, S., Le Bras, G., Dos Santos, D., Ogunniyi, A.D., Le Thomas, I., Garel, J.R., Paton, J.C., and Trombe, M.C. (1999) The NADH oxidase of Streptococcus pneumoniae: its involvement in competence and virulence. Molecular Microbiology 34: 1018–1028.PubMedCrossRefGoogle Scholar
  5. Baba, H., Kawamura, I., Kohda, C., Nomura, T., Ito, Y., Kimoto, T., Watanabe, I., Ichiyama, S., and Mitsuyama, M. (2001) Essential role of domain 4 of pneumolysin from Streptococcus pneumoniae in cytolytic activity as determined by truncated proteins. Biochemical and Biophysical Research Communications 281: 37–44.PubMedCrossRefGoogle Scholar
  6. Benton, K.A., Everson, M.P., and Briles, D.E. (1995) A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infection and Immunity 63: 448–455.PubMedGoogle Scholar
  7. Bergmann, S., Wild, D., Diekmann, O., Frank, R., Bracht, D., Chhatwal, G.S., and Hammerschmidt, S. (2003) Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 49: 411–423.PubMedCrossRefGoogle Scholar
  8. Bergmann, S., Rohde, M., and Hammerschmidt, S. (2004) Glyceraldehyde-3-Phosphate Dehydrogenase of Streptococcus pneumoniae Is a Surface-Displayed Plasminogen-Binding Protein. Infect. Immun. 72: 2416–2419.PubMedCrossRefGoogle Scholar
  9. Berry, A., Alexander, J., Mitchell, T., Andrew, P., Hansman, D., and Paton, J. (1995a) Effect of defined point mutations in the pneumolysin gene on the virulence of Streptococcus pneumoniae. Infect. Immun. 63: 1969–1974.PubMedGoogle Scholar
  10. Berry, A.M., Lock, R.A., Hansman, D., and Paton, J.C. (1989a) Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun. 57: 2324–2330.PubMedGoogle Scholar
  11. Berry, A.M., Yother, J., Briles, D.E., Hansman, D., and Paton, J.C. (1989b) Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect. Immun. 57: 2037–2042.PubMedGoogle Scholar
  12. Berry, A.M., Alexander, J.E., Mitchell, T.J., Andrew, P.W., Hansman, D., and Paton, J.C. (1995b) Effect of defined point mutations in the pneumolysin gene on the virulence of Streptococcus pneumoniae. Infect Immun 63: 1969–1974.PubMedGoogle Scholar
  13. Berry, A.M., and Paton, J.C. (2000) Additive Attenuation of Virulence of Streptococcus pneumoniae by Mutation of the Genes Encoding Pneumolysin and Other Putative Pneumococcal Virulence Proteins. Infect. Immun. 68: 133–140.PubMedCrossRefGoogle Scholar
  14. Black, S., Shinefield, H., Fireman, B., Lewis, E., Ray, P., Hansen, J.R., Elvin, L., Ensor, K.M., Hackell, J., Siber, G., Malinoski, F., Madore, D., Chang, I., Kohberger, R., Watson, W., Austrian, R., and Edwards, K. (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19: 187–195.PubMedCrossRefGoogle Scholar
  15. Boulnois, G.J., Mitchell, T.J., Saunders, F.K., Mendez, F.J., and Andrew, P.W. (1990) Structure and function of pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae. In Bacterial Protein Toxins. Rapuoli, R.e.a. (ed): Stuttgart, pp. pp. 43–51.Google Scholar
  16. Braun, J.S., Novak, P., Gao, G.L., Murray, P.J., and Shenep, J.L. (1999) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infection and Immunity 67: 3750–3756.PubMedGoogle Scholar
  17. Braun, J.S., Sublett, J.E., Freyer, D., Mitchell, T.J., Cleveland, J.L., Tuomanen, E.I., and Weber, J.R. (2002) Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis. Journal of Clinical Investigation 109: 19–27.PubMedCrossRefGoogle Scholar
  18. Brown, J.S., Gilliland, S.M., and Holden, D.W. (2001) A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40: 572–585.PubMedCrossRefGoogle Scholar
  19. Brueggemann, A.B., Griffiths, D.T., Meats, E., Peto, T., Crook, D.W., and Spratt, B.G. (2003) Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype-and clonespecific differences in invasive disease potential. J Infect Dis 187: 1424–1432.PubMedCrossRefGoogle Scholar
  20. Brueggemann, A.B., and Spratt, B.G. (2003) Geographic Distribution and Clonal Diversity of Streptococcus pneumoniae Serotype 1 Isolates. J. Clin. Microbiol. 41: 4966–4970.PubMedCrossRefGoogle Scholar
  21. Camara, M., Boulnois, G.J., Andrew, P.W., and Mitchell, T.J. (1994) A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 62: 3688–3695.PubMedGoogle Scholar
  22. Canvin, J.R., Marvin, A.P., Sivakumaran, M., Paton, J.C., Boulnois, G.J., Andrew, P.W., and Mitchell, T.J. (1995) The Role of Pneumolysin and Autolysin in the Pathology of Pneumonia and Septicemia in Mice Infected With a Type-2 Pneumococcus. Journal of Infectious Diseases 172: 119–123.PubMedGoogle Scholar
  23. Cockeran, R., Steel, H.C., Mitchell, T.J., Feldman, C., and Anderson, R. (2001) Pneumolysin potentiates production of prostaglandin E-2 and leukotriene B-4 by human neutrophils. Infection and Immunity 69: 3494–3496.PubMedCrossRefGoogle Scholar
  24. Cockeran, R., Durandt, C., Feldman, C., Mitchell, T.J., and Anderson, R. (2002) Pneumolysin activates the synthesis and release of interleukin-8 by human neutrophils in vitro. J Infect Dis 186: 562–565.PubMedCrossRefGoogle Scholar
  25. Comis, S.D., Osborne, M.P., Stephen, J., Tarlow, M.J., Hayward, T.L., Mitchell, T.J., Andrew, P.W., and Boulnois, G.J. (1993) Cytotoxic effects on hair cells of guinea pig cochlea produced by pneumolysin, the thiol activated toxin of Streptococcus pneumoniae. Acta Otolaryngol 113: 152–159.PubMedGoogle Scholar
  26. Crain, M.J., II, W.D.W., Turner, J.S., Yother, J., Talkington, D.F., McDaniel, L.S., Gray, B.M., and Briles, D.E. (1990) Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect Immun 58: 3293–3299.PubMedGoogle Scholar
  27. Cundell, D.R., Gerard, N.P., Gerard, C., Idanpaan-Heikkila, I., and Tuomanen, E.I. (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435–438.PubMedCrossRefGoogle Scholar
  28. Dagan, R., Gradstein, S., Belmaker, I., Porat, N., Siton, Y., Weber, G., Janco, J., and Yagupsky, P. (2000) An outbreak of Streptococcus pneumoniae serotype 1 in a closed community in southern Israel. Clin Infect Dis 30: 319–321.PubMedCrossRefGoogle Scholar
  29. Dave, S., Brooks-Walter, A., Pangburn, M.K., and McDaniel, L.S. (2001) PspC, a Pneumococcal Surface Protein, Binds Human Factor H. Infect. Immun. 69: 3435–3437.PubMedCrossRefGoogle Scholar
  30. de los Toyos, J.R., Mendez, F.J., Aparicio, J.F., Vazquez, F., Del Mar Garcia Suarez, M., Fleites, A., Hardisson, C., Morgan, P.J., Andrew, P.W., and Mitchell, T.J. (1996) Functional analysis of pneumolysin by use of monoclonal antibodies. Infect Immun 64: 480–484.PubMedGoogle Scholar
  31. DeMaria, A., Browne, K., Berk, S.L., Sherwood, E.J., and McCabe, W.R. (1980) An outbreak of type 1 pneumococcal pneumonia in a men’s shelter. J. American Medical Association 244: 1446–1449.CrossRefGoogle Scholar
  32. Denny, F.W., and Loda, F.A. (1986) Acute respiratory infections are the leading cause of death in children in developing countries. Am J Trop Med Hyg 35: 1–2.PubMedGoogle Scholar
  33. Duane, P.G., Rubins, J.B., Weisel, H.R., and Janoff, E.N. (1993) Identification of hydrogen peroxide as a Streptococcus pneumoniae toxin for rat alveolar epithelial cells. Infection and Immunity: 4392–4397.Google Scholar
  34. Eltringham, G., Kearns, A., Freeman, R., Clark, J., Spencer, D., Eastham, K., Harwood, J., and Leeming, J. (2003) Culture-Negative Childhood Empyema Is Usually Due to Penicillin-Sensitive Streptococcus pneumoniae Capsular Serotype 1. J. Clin. Microbiol. 41: 521–522.PubMedCrossRefGoogle Scholar
  35. Ferrante, A., RowanKelly, B., and Paton, J.C. (1984) Inhibition of in vitro human lymphocyte response by the pneumococcal toxin pneumolysin. Infect. Immun. 46: 585–589.PubMedGoogle Scholar
  36. Gillespie, S.H. (1989) Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J. Med. Microbiol. 28: 237–248.PubMedCrossRefGoogle Scholar
  37. Gosink, K.K., Mann, E.R., Guglielmo, C., Tuomanen, E.I., and Masure, H.R. (2000) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infection and Immunity 68: 5690–5695.PubMedCrossRefGoogle Scholar
  38. Gratten, M., Morey, F., Dixon, J., Manning, K., Torzillo, P., Matters, R., Erlich, J., Hanna, J., Asche, V., and Riley, I. (1993) An outbreak of serotype 1 Streptococcus pneumoniae infection in central Australia. Med J Aust 158: 340–342.PubMedGoogle Scholar
  39. Gray, B.M., Converse, G.M.I., and Dillon, H.C.J. (1980) Epidemiologic Studies of Streptococcus pneumoniae in Infants: Acquisition, Carriage, and Infection During the First 24 Months of Life. The Journal of Infectious Disease 142: 923–933.Google Scholar
  40. Hammerschmidt, S., Bethe, G., H. Remane, P., and Chhatwal, G.S. (1999) Identification of Pneumococcal Surface Protein A as a Lactoferrin-Binding Protein of Streptococcus pneumoniae. Infect. Immun. 67: 1683–1687.PubMedGoogle Scholar
  41. Hausdorff, W.P., Bryant, J., Kloek, C., Paradiso, P.R., and Siber, G.R. (2000) The contribution of specific pneumococcal serogroups to different disease manifestations: implications for conjugate vaccine formulation and use, part II. Clin Infect Dis 30: 122–140.PubMedCrossRefGoogle Scholar
  42. Hausdorff WP, B.J., Paradiso P.R., Siber G.R. (2000) Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis 30: 100–121.PubMedCrossRefGoogle Scholar
  43. Hava, D., and Camilli, A. (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45: 1389–1406.PubMedGoogle Scholar
  44. Henrichsen, J. (1995) Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33: 2759–2762.PubMedGoogle Scholar
  45. Henriques Normark, B., Kalin, M., Ortqvist, A., Akerlund, T., Liljequist, B.O., Hedlund, J., Svenson, S.B., Zhou, J., Spratt, B.G., Normark, S., and Kallenius, G. (2001) Dynamics of penicillin-susceptible clones in invasive pneumococcal disease. J Infect Dis 184: 861–869.PubMedCrossRefGoogle Scholar
  46. Hirst, R.A., Sikand, K.S., Rutman, A., Mitchell, T.J., Andrew, P.W., and Ocallaghan, C. (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infection and Immunity 68: 1557–1562.PubMedCrossRefGoogle Scholar
  47. Holmes, A.R., McNab, R., Millsap, K.W., Rohde, M., Hammerschmidt, S., Mawdsley, J.L., and Jenkinson, H.F. (2001) The pavA gene of Streptococcus pneumoniae encodes a fibronectinbinding protein that is essential for virulence. Mol Microbiol 41: 1395–1408.PubMedCrossRefGoogle Scholar
  48. Holtje, J.-V., and Tomasz, A. (1974) Teichoic Acid Phosphorylcholine Esterase. A Novel Enzyme Acivity in Pneumococcus. J. Biol. Chem. 249: 7032–7034.PubMedGoogle Scholar
  49. Houldsworth, S., Andrew, P.W., and Mitchell, T.J. (1994) Pneumolysin Stimulates Production of Tumor Necrosis Factor Alpha and Interleukin-1β by Human Mononuclear Phagocytes. Infection and Immunity 62: 1501–1503.PubMedGoogle Scholar
  50. Humphrey, J.H. (1948) Hyaluronidase Production by Pneumococci. Journal of Pathology and Bacteriology 55: 273–275.Google Scholar
  51. Ispahani, P., Slack, R.C., Donald, F.E., Weston, V.C., and Rutter, N. (2004) Twenty year surveillance of invasive pneumococcal disease in Nottingham: serogroups responsible and implications for immunisation. Arch Dis Child 89: 757–762.PubMedCrossRefGoogle Scholar
  52. Janulczyk, R., Iannelli, F., Sjoholm, A.G., Pozzi, G., and Bjorck, L. (2000) Hic, a Novel Surface Protein of Streptococcus pneumoniae That Interferes with Complement Function. J. Biol. Chem. 275: 37257–37263.PubMedCrossRefGoogle Scholar
  53. Jefferies, J.M.C., Smith, A., Clarke, S.C., Dowson, C., and Mitchell, T.J. (2004) Genetic Analysis of Diverse Disease-Causing Pneumococci Indicates High Levels of Diversity within Serotypes and Capsule Switching. J. Clin. Microbiol. 42: 5681–5688.PubMedCrossRefGoogle Scholar
  54. Johnson, M.K. (1979) The role of pneumolysin in ocular infections with Streptococcus pneumoniae. Curr. Eye Res. 9: 1107–1114.Google Scholar
  55. Jonsson, S., Musher, D.M., Chapman, A., Goree, A., and Lawrence, E.C. (1985) Phagoocytosis and Killing of Common Bacterial pathogens of the Lung by Human Alveolar Macrophages. The Journal of Infectious Diseases 152: 4–13.PubMedGoogle Scholar
  56. Kalin, M. (1998) Pneumococcal serotypes and their clinical relevance. Thorax 53: 159–162.PubMedCrossRefGoogle Scholar
  57. Kharat, A.S., and Tomasz, A. (2003) Inactivation of the srtA Gene Affects Localization of Surface Proteins and Decreases Adhesion of Streptococcus pneumoniae to Human Pharyngeal Cells In Vitro. Infect. Immun. 71: 2758–2765.PubMedCrossRefGoogle Scholar
  58. Kipli, T., Jokinen, J., Herva, E., Palmu, A., Lockhart, S., Siber, G., Eskola, J., and Group, t.F.O.M.S. (2000) Effect of a heptavalent pneumococcal vaccine (PNCCRM) on pneumococcal acute otitis media (AOM) by serotype. In Second International Symposium on Pneumococci and Pneumococcal Disease, Sun City, South Africa, March 19–23, abstract O20.Google Scholar
  59. Konradsen, H.B., and Kaltoft, M.S. (2002) Invasive Pneumococcal Infections in Denmark from 1995 to 1999: Epidemiology, Serotypes, and Resistance. Clin. Diagn. Lab. Immunol. 9: 358–365.PubMedCrossRefGoogle Scholar
  60. Korchev, Y.E., Bashford, C.L., Pederzolli, C., Pasternak, C.A., Morgan, P.J., Andrew, P.W., and Mitchell, T.J. (1998) A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. Biochem J 329 (Pt 3): 571–577.PubMedGoogle Scholar
  61. Lau, G.W., Haataja, S., Lonetto, M., Kensit, S.E., Marra, A., Bryant, A.P., McDevitt, D., Morrison, D.A., and Holden, D.W. (2001) A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 40: 555–571.PubMedCrossRefGoogle Scholar
  62. Lawrence, M.C., Pilling, P.A., Epa, V.C., Berry, A.M., Ogunniyi, A.D., and Paton, J.C. (1998) The crytal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6: 1553–1561.PubMedCrossRefGoogle Scholar
  63. Leimkugel, J., Adams Forgor, A., Gagneux, S., Pfluger, V., Flierl, C., Awine, E., Naegeli, M., Dangy, J.P., Smith, T., Hodgson, A., and Pluschke, G. (2005) An Outbreak of Serotype 1 Streptococcus pneumoniae Meningitis in Northern Ghana with Features That Are Characteristic of Neisseria meningitidis Meningitis Epidemics. J Infect Dis 192: 192–199.PubMedCrossRefGoogle Scholar
  64. Lipsitch, M. (1999) Bacterial vaccines and serotype replacement: lessons from Haemophilus infl uenzae and prospects for Streptococus pneumoniae. Em. Inf. Dis. 5: 336–345.CrossRefGoogle Scholar
  65. Lock, R.A., Zhang, Q.Y., Berry, A.M., and Paton, J.C. (1996) Sequence variation in the Streptococcus pneumoniae pneumolysin gene affecting haemolytic activity and electrophoretic mobility of the toxin. Microb Pathog 21: 71–83.PubMedCrossRefGoogle Scholar
  66. Madsen, M., Lebenthal, Y., Cheng, Q., Smith, B.L., and Hostetter, M.K. (2000) A pneumococcal protein that elicits interleukin-8 from pulmonary epithelial cells. Journal of Infectious Diseases 181: 1330–1336.PubMedCrossRefGoogle Scholar
  67. Malley, R., Henneke, P., Morse, S.C., Cieslewicz, M.J., Lipsitch, M., Thompson, C.M., Kurt-Jones, E., Paton, J.C., Wessels, M.R., and Golenbock, D.T. (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. PNAS: 0435928100.Google Scholar
  68. Martens, P., Worm, S.W., Lundgren, B., Konradsen, H.B., and Benfield, T. (2004) Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infect Dis 4: 21.PubMedCrossRefGoogle Scholar
  69. McChlery, S.M., Scott, K.J., and Clarke, S.C. (2005) Clonal analysis of invasive pneumococcal isolates in Scotland and coverage of serotypes by the licensed conjugate polysaccharide pneumococcal vaccine: possible implications for UK vaccine policy. Eur J Clin Microbiol Infect Dis.Google Scholar
  70. Mcdaniel, L.S., Yother, J., Vijayakumar, M., Mcgarry, L., Guild, W.R., and Briles, D.E. (1987) Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein-a (pspa). Journal Of Experimental Medicine 165: 381–394.PubMedCrossRefGoogle Scholar
  71. McFarlane, A.C., Hamra, L.K., Reiss-Levy, E., and Hansman, D. (1979) Pneumococcal peritonitis in adolescent girls. Med J Aust 1: 100–101.PubMedGoogle Scholar
  72. Mercat, A., Nguyen, J., and Dautzenberg, B. (1991) An outbreak of pneumococcal pneumonia in two men’s shelters. Chest 99: 147–151.PubMedGoogle Scholar
  73. Michon, F., Fusco, P.C., Minetti, C.A.S.A., Laude-Sharp, M., Uitz, C., Huang, C.-H., D’Ambra, A.J., Moore, S., Remeta, D.P., Heron, I., and Blake, M.S. (1998) Multivalent pneumococcal capsular polysaccharide conjugate vaccines employing genetically detoxified pneumolysin as a carrier protein. Vaccine 16: 1732–1741.PubMedCrossRefGoogle Scholar
  74. Mitchell, T.J., Mendez, F., Paton, J.C., Andrew, P.W., and Boulnois, G.J. (1990) Comparison of pneumolysin genes and proteins from Streptococcus pneumoniae types 1 and 2. Nucleic Acids Res 18: 4010.PubMedGoogle Scholar
  75. Neeleman, C., Geelen, S.P.M., Aerts, P.C., Daha, M.R., Mollnes, T.E., Roord, J.J., Posthuma, G., vanDijk, H., and Fleer, A. (1999) Resistance to both complement activation and phagocytosis in type 3 pneumococci is mediated by the binding of complement regulatory protein factor H. Infection and Immunity 67: 4517–4524.PubMedGoogle Scholar
  76. Obaro, S.K. (2000) Confronting the pneumococcus: a target shift or bullet change? Vaccine 19: 1211–1217.PubMedCrossRefGoogle Scholar
  77. Obaro, S.K. (2002) The new pneumococcal vaccine. Clin Microbial Infect 8: 623–633.CrossRefGoogle Scholar
  78. Paterson, G.K., and Mitchell, T.J. (2006) The role of Streptococcus pneumoniae sortase A in colonization and pathogenesis. Microbes and Infection 8: 145–153.PubMedCrossRefGoogle Scholar
  79. Paton, J.C., and Ferrante, A. (1983) Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect. Immun. 41: 1212–1216.PubMedGoogle Scholar
  80. Paton, J.C., Rowan-Kelly, B., and Ferrante, A. (1984) Activation of human complement by the pneumococcal toxin pneumolysin. Infect. Immun. 43: 1085–1087.PubMedGoogle Scholar
  81. Paton, J.C., Lock, R.A., Lee, C.J., Li, J.P., Berry, A.M., Mitchell, T.J., Andrew, P.W., Hansman, D., and Boulnois, G.J. (1991) Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun 59: 2297–2304.PubMedGoogle Scholar
  82. Paton, J.C. (1996) The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae. Trends Microbiol 4: 103–106.PubMedCrossRefGoogle Scholar
  83. Pelton, S.I., Dagan, R., Gaines, B.M., Klugman, K.P., Laufer, D., O’Brien, K., and Schmitt, H.J. (2003) Pneumococcal conjugate vaccines: proceedings from an interactive symposium at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Vaccine 21: 1562–1571.PubMedCrossRefGoogle Scholar
  84. Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L., and Simon, D. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infection and Immunity 66: 5620–5629.PubMedGoogle Scholar
  85. Rosenow, C., Ryan, P., Weiser, J., Johnson, S., Fontan, P., Ortqvist, A., and Masure, H. (1997) Contribution of a Novel Choline Binding Protein to Adherence, Colonization, and Immunogenicity of Streptococcus pneumoniae. Molecular Microbiology 25: 819–829.PubMedCrossRefGoogle Scholar
  86. Rubins, J., Charboneau, D., Fasching, C., Berry, A., Paton, J., Alexander, J., Andrew, P., Mitchell, T., and Janoff, E. (1996a) Distinct roles for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am. J. Respir. Crit. Care Med. 153: 1339–1346.PubMedGoogle Scholar
  87. Rubins, J.B., Duane, P.G., Charboneau, D., and Janoff, E.N. (1992) Toxicity of Pneumolysin to Pulmonary Endothelial Cells In Vitro. Infection and Immunity 60: 1740–1746.PubMedGoogle Scholar
  88. Rubins, J.B., Duane, P.G., Clawson, D., Charboneau, D., Young, J., and Niewoehner, D.E. (1993) Toxicity of Pneumolysin to Pulmonary Alveolar Epithelial Cells. Infection and Immunity 61: 1352–1358.PubMedGoogle Scholar
  89. Rubins, J.B., Mitchell, T.J., Andrew, P.W., and Niewoehner, D.E. (1994) Pneumolysin activates phospholipase A in pulmonary artery endothelial cells. Infection and Immunity 62: 3829–3836.PubMedGoogle Scholar
  90. Rubins, J.B., Charboneau, D., Paton, J.C., Mitchell, T.J., Andrew, P.W., and Janoff, E.N. (1995) Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. J Clin Invest 95: 142–150.PubMedCrossRefGoogle Scholar
  91. Rubins, J.B., Charboneau, D., Fasching, C., Berry, A.M., Paton, J.C., Alexander, J.E., Andrew, P.W., Mitchell, T.J., and Janoff, E.N. (1996b) Distinct role for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am. J. Respir. and Critical Care Medicine 153: 1339–1346.Google Scholar
  92. Sirotnak, A.P., Eppes, S.C., and Klein, J.D. (1996) Tuboovarian abscess and peritonitis caused by Streptococcus pneumoniae serotype 1 in young girls. Clin Infect Dis 22: 993–996.PubMedGoogle Scholar
  93. Smith, B.L., and Hostetter, M.K. (2000) C3 as substrate for adhesion of Streptococcus pneumoniae. J Infect Dis 182: 497–508.PubMedCrossRefGoogle Scholar
  94. Spratt, B.G., and Greenwood, B.M. (2000) Prevention of pneumococcal disease by vaccination: does serotype replacement matter? The Lancet 356: 1210–1211.CrossRefGoogle Scholar
  95. Srivastava, A., Henneke, P., Visintin, A., Morse, S.C., Martin, V., Watkins, C., Paton, J.C., Wessels, M.R., Golenbock, D.T., and Malley, R. (2005) The Apoptotic Response to Pneumolysin Is Toll-Like Receptor 4 Dependent and Protects against Pneumococcal Disease. Infect. Immun. 73: 6479–6487.PubMedCrossRefGoogle Scholar
  96. Steinfort, C., Wilson, R., Mitchell, T., Feldman, C., Rutman, A., Todd, H., Sykes, D., Walker, J., Saunders, K., Andrew, P.W., Boulnois, G.J., and Cole, P.J. (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infection and Immunity 57: 2006–2013.PubMedGoogle Scholar
  97. Stringaris, A.K., Geisenhainer, J., Bergmann, F., Balshusemann, C., Lee, U., Zysk, G., Mitchell, T.J., Keller, B.U., Kuhnt, U., Gerber, J., Spreer, A., Bahr, M., Michel, U., and Nau, R. (2002) Neurotoxicity of Pneumolysin, a Major Pneumococcal Virulence Factor, Involves Calcium Infl ux and Depends on Activation of p38 Mitogen-Activated Protein Kinase. Neurobiol Dis 11: 355–368.PubMedCrossRefGoogle Scholar
  98. Tan, T.Q., Mason, E.O., Jr, Wald, E.R., Barson, W.J., Schutze, G.E., Bradley, J.S., Givner, L.B., Yogev, R., Kim, K.S., and Kaplan, S.L. (2002) Clinical Characteristics of Children With Complicated Pneumonia Caused by Streptococcus pneumoniae. Pediatrics 110: 1–6.PubMedCrossRefGoogle Scholar
  99. Tettelin, H., Nelson, K.E., Paulsen, I.T., Eisen, J.A., Read, T.D., Peterson, S., Heidelberg, J., DeBoy, R.T., Haft, D.H., Dodson, R.J., Durkin, A.S., Gwinn, M., Kolonay, J.F., Nelson, W.C., Peterson, J.D., Umayam, L.A., White, O., Salzberg, S.L., Lewis, M.R., Radune, D., Holtzapple, E., Khouri, H., Wolf, A.M., Utterback, T.R., Hansen, C.L., McDonald, L.A., Feldblyum, T.V., Angiuoli, S., Dickinson, T., Hickey, E.K., Holt, I.E., Loftus, B.J., Yang, F., Smith, H.O., Venter, J.C., Dougherty, B.A., Morrison, D.A., Hollingshead, S.K., and Fraser, C.M. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498–506.PubMedCrossRefGoogle Scholar
  100. Tong, H.H., Blue, L.E., James, M.A., and DeMaria, T.F. (2000) Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infection and Immunity 68: 921–924.PubMedCrossRefGoogle Scholar
  101. Tseng, H.-J., McEwan, A.G., Paton, J.C., and Jennings, M.P. (2002) Virulence of Streptococcus pneumoniae: PsaA Mutants Are Hypersensitive to Oxidative Stress. Infect. Immun. 70: 1635–1639.PubMedCrossRefGoogle Scholar
  102. Tu, A.T., Fulgham, R.L., McCrory, M.A., Briles, D.E., and Szalai, A.J. (1999) Pneumococcal Surface Protein A Inhibits Complement Activation by Streptococcus pneumoniae. Infection and Immunity 67: 4720–4724.PubMedGoogle Scholar
  103. Tuomanen, E., Liu, H., Hengstler, B., Zak, O., and Tomasz, A. (1985) The induction of meningeal inflammation by components of the pneumococcal cell wall. J. Infect. Dis. 151: 859–868.PubMedGoogle Scholar
  104. Tweten, R.K. (2005) Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins. Infect. Immun. 73: 6199–6209.PubMedCrossRefGoogle Scholar
  105. Westh, H., Skibsted, L., and Korner, B. (1990) Streptococcus pneumoniae infections of the female genital tract and in the newborn child. Rev Infect Dis 12: 416–422.PubMedGoogle Scholar
  106. Winter, A.J., Comis, S.D., Osborne, M.P., Tarlow, M.J., Stephen, J., Andrew, P.W., Hill, J., and Mitchell, T.J. (1997) A role for pneumolysin but not neuraminidase in the hearing loss and cochlear damage induced by experimental pneumococcal meningitis in guinea pigs. Infect. Immun. 65: 4411–4418.PubMedGoogle Scholar
  107. Yesilkaya, H., Kadioglu, A., Gingles, N., Alexander, J.E., Mitchell, T.J., and Andrew, P.W. (2000) Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 68: 2819–2826.PubMedCrossRefGoogle Scholar
  108. Zhang, J.R., Mostov, K.E., Lamm, M.E., Nanno, M., Shimida, S., Ohwaki, M., and Tuomanen, E. (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827–837.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tim J. Mitchell
    • 1
  1. 1.Division of Infection and Immunity Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK

Personalised recommendations