Skip to main content

Direct Nucleotide Sequencing for Amplification Product Identification

  • Chapter
Advanced Techniques in Diagnostic Microbiology
  • 3558 Accesses

Abstract

The advances of technology to determine the nucleotide sequence of DNA have fundamentally changed the field of biological research and medicine. For diagnostic molecular microbiology, the most precise method of identification of a PCR product (amplicon) is to determine its nucleotide sequence. Although it is not always necessary to sequence the entire amplicon for routine diagnostic procedures, DNA sequence has been used to analyze a broad range of PCR products for bacterial identification; for gene mutations related to antimicrobial resistance; for bacterial strain typing and viral genotyping; and so forth. Most of the amplicons of these applications are large (range approximately from 300 base pairs to 1500 base pairs), and the exact nucleotide sequence of the amplicoms are crucial for the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, M.E., Feola, M., Trama, J., Tilton, R.C., & Mordechai, E. (2005). Simultaneous detection of herpes simplex virus types 1 and 2 by real-time PCR and pyrosequencing. J Clin Virol, 33(1), 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Barry, T., Colleran, G., Glennon, M., Dunican, L. K., & Gannon, F. (1991). The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl, 1, 51–56.

    PubMed  CAS  Google Scholar 

  • Bukh, J., Miller, R.H., & Purcell, R.H. (1995). Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis,15, 41–63.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Lee, C., Teng, J., & Chang, T.C. (2004). Identification of clinically relevant viridans group streptococci by sequence analysis of the 16S-23S ribosomal DNA spacer region. J Clin Microbiol, 42, 2651–2657.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.C., Eisner, J. D., Kattar, M. M., Rassoulian-Barrett, S. L., LaFe, K., Yarfitz, S.L., Limaye, A.P., & Cookson, B.T. (2000). J. Clin Microbiol, 38, 2302–2310. Identification of medically important yeasts using PCR-based detection ofDNAsequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes.

    PubMed  CAS  Google Scholar 

  • Chen, Yi-Ching; Eisner, J.D., Kattar, M.M., Rassoulian-Barrett, S.L., Lafe, K., Bui, U., Limaye, A.P., & Cookson, B.T. (2001). Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. JCM, 39, 4042–4051.

    CAS  Google Scholar 

  • Couto, I., Pereira, S., Miragaia, M., Sanches, I.S., de Lencastre H. (2001). Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. J Clin Microbiol, 39, 3099–3103.

    Article  PubMed  CAS  Google Scholar 

  • De Smet, A.L., Brown, I.N., Yates, M., & Ivanyi, J. (1995). Ribosomal internal transcribed spacers are identical among Mycobacterium avium-intracellulare complex isolates from AIDS patients, but vary among isolates from elderly pulmonary disease patients. Microbiology, 141, 2739–2747.

    PubMed  CAS  Google Scholar 

  • Forsman, P., Tilsala-Timisjarvi, A., & Alatossava, T. (1997). Identification of staphylococcal and streptpcoccal causes of bovine mastitis using 16S-23S rRNA spacer regions. Microbiology, 143, 3491–3500.

    Article  PubMed  CAS  Google Scholar 

  • Frothingham, R., & Wilson, K.H. (1993). Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol, 175, 2818–2825.

    PubMed  CAS  Google Scholar 

  • Garcia-Martinez J., Martinez-Murcia A., Anton A.I., Rodriguez-Valera F. (1996). Comparison of the small 16S to 23S intergenic spacer region (ISR) of the rRNA operons of some Escherichia coli strains of the ECOR collection and E. coli K-12. J Bacteriol, 178, 6374–7.

    PubMed  CAS  Google Scholar 

  • Guarro, J., Gene, J., & Stchigel, A.M. (1999). Developments in fungal taxonomy. Clin Microbiol Rev, 12, 454–500.

    PubMed  CAS  Google Scholar 

  • Gürtler, V., & Barrie, H.D. (1995). Typing of Staphylococcus aureus strains by PCRamplification of variable-length 16S-23S rDNA spacer regions: characterization of spacer sequences. Microbiology 141, 1255–1265.

    PubMed  Google Scholar 

  • Gürtler,V., & Stanisich,V.A. (1996). New approaches to typing and identification of bacteria using 16S-23S rDNA spacer region. Microbiology, 142, 3–16.

    PubMed  Google Scholar 

  • Hance, A.J., Grandchamp, B., Le’vy-Fre’bault, V., Lecossier, D., Rauzier, J., Bocart, D., & Gicquel, B. (1989). Detection and identification of mycobacteria by amplification of mycobacterial DNA. Mol Microbiol, 3, 843–849.

    Article  PubMed  CAS  Google Scholar 

  • Hamid, Mohamed E., Andreas Roth, Olfert Landt, Reiner M. Kroppenstedt, Goodfellow, M., & Mauch, H. (2002). Differentiation between Mycobacterium farcinogenes and Mycobacterium senegalense strains based on 16S-23S ribosomal DNA internal transcribed spacer sequences. J Clin Microbiol, 40, 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Jordan J.A., Butchko, A.R., Durso, M.B. (2005). Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. J Mol Diagn, 7, 105–110.

    PubMed  CAS  Google Scholar 

  • Kapur, V., Li, L.L., Hamrick, M.R., Plikaytis, B.B., Shinnick, T.M., Telenti, A., Jacobs, W.R., Banerjee, A., Cole, S., Yuen, K.Y., Clarridge, J.E., Kreiswirth, B.N., & Musser, J.M. (1995). Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med, 119, 131–138.

    PubMed  CAS  Google Scholar 

  • Lindström, A., Odeberg, J., & Albert, J. (2004). Pyrosequencing for detection of lamivudineresistant hepatitis B virus. J Clin Microbiol, 42, 4788–4795.

    Article  PubMed  CAS  Google Scholar 

  • Magnus U., Olce’n, P., Jonasson, J., & Fredlund, H. (2004). Molecular typing of Neisseria gonorrhoeae isolates by pyrosequencing of highly polymorphic segments of the porB gene. J Clin Microbiol, 42, 2926–2934.

    Article  CAS  Google Scholar 

  • Maxam A.M., & Gilbert, W. (1977). A new method for sequencing DNA Proc Natl Acad Sci USA, 74, 560–564.

    Article  PubMed  CAS  Google Scholar 

  • McNabb A., Eisler, D., Adie, K., Amos, M., Rodrigues, M., Stephens, G., Black, W.A., & Isaac-Renton, J. (2004). Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources J Clin Microbiol, 42, 3000–3011.

    Article  PubMed  CAS  Google Scholar 

  • O’meara, D., Wilbe, K., Leitner, T., Hejdeman, B., Albert, J., & Lundeberg, J. (2001). Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing J Clin Microbiol, 39, 464–473.

    Article  PubMed  CAS  Google Scholar 

  • Plikaytis, B.B., Plikaytis, B.D., Yakrus, A., Butler, W.R., Woodley, C.L., Silcox, V.A., & Shinnick, T.M. (1992). Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol, 30, 1815–1822.

    PubMed  CAS  Google Scholar 

  • Rogall, T., Wolters, J., Floher, T., & Böttger, E.C. (1990).Towards a phylogeny and definition of the species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol, 40, 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Roth, A., Fischer, M., Hamid, H.E., Ludwig, W., Michalke, S., & Mauch, H. (1998). Differentiation of phylogenetically related slowly growing mycobacteria based on 16S- 23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol, 36, 139–147.

    PubMed  CAS  Google Scholar 

  • Ruano, G., & Kidd, K.K. (1991). Coupled amplification and sequencing of genomic DNA Proc Natl Acad Sci USA, 88, 2815–2819.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., & Maniatis, T. (1989). Molecular Cloning:Alaboratory Manual, 2nd ed. Cold Spring Harb. Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Sanger F., Nicklen, S., & Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Shopsin, B., Gomez, M., Waddington, M., Riehman, M., & Kreiswirth, B.N. (2000). Use of coagulase gene (coa) repeat region nucleotide sequences for typing of methicillinresistant Staphylococcus aureus strains J Clin Microbiol, 38, 3453–3456.

    PubMed  CAS  Google Scholar 

  • Simmonds, P. (1995). Variability of hepatitis C virus. Hepatology, 21, 570–583.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, A., Arnold, C., & Woodford, N. (2003). Rapid detection and estimation by pyrosequencing of 23S rrna genes with a single nucleotide polymorphism conferring linezolid resistance in enterococci. Antimicrob agents and Chemother, 47, 3620–3622.

    Article  CAS  Google Scholar 

  • Travis, H., Iwen, P.C., & Hinrichs, S.H. (2000). Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol, 38, 1510–1515.

    Google Scholar 

  • Telenti, A., Marchesi, F., Balz, M., Bally, F., Böttger, E.C., & Bodmer, T. (1993). Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol, 31, 175–178.

    PubMed  CAS  Google Scholar 

  • Tuohy M.J., Hall, G.S., Sholtis, M., Procop, G. W. (2005). Pyrosequencingtrade mark as a tool for the identification of common isolates of Mycobacterium sp. Diagn Microbiol Infect Dis, 51, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • White, T.J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gefland, D.H., Sninsky, J.J., and White T.J., eds. PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, pp. 315–322.

    Google Scholar 

  • Yager, T.D., Baron, L., Batra, R., Bouevitch, A., Chan, D., Chan, K., Darasch, S., Gilchrist, R., Izmailov, A., Lacroix, J.-M., Marchelleta, K., Renfrew, J., Rushlow, D., Steinbach, E., Ton, C., Waterhouse, P., Zaleski, H., Dunn, J.M., & Stevens, J. (1999). High performance DNA sequencing, and the detection of mutations and polymorphisms, on the Clipper sequencer. Electrophoresis, 20, 1280–1300.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hong, T. (2006). Direct Nucleotide Sequencing for Amplification Product Identification. In: Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/0-387-32892-0_16

Download citation

Publish with us

Policies and ethics