Sulfonamides in the Environment as Veterinary Drugs

  • Premasis Sukul
  • Michael Spiteller
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 187)


SAs, a structurally related group of antibiotics containing a similar 4-aminobenzene sulfonamide backbone, are used in agriculture, aquaculture, animal husbandry, and also as human medicines. Competing with p-aminobenzoic acid in the enzymatic synthesis of dihydrofolic acid, SAs inhibit the growth and reproduction of bacteria. Once released to the environment, SAs distribute themselves among different environmental compartments, along with their degradation products, and are transported to surface water and groundwater. The physicochemical properties, the dosage applied and the nature of the environmental components with which they interact, govern the whole process. SAs, as a class, are less sorptive, impersistent, and leachable. They cannot be characterized as readily biodegradable. Their adsorption to soil increases with the aromaticity and electronegativity of functional groups attached to the sulfonyl phenyl amine core. Preferential flow in clay soils has been identified as a mechanism responsible for surface water contamination by SAs.


Veterinary Drug Direct Photolysis Liquid Manure Property Reference Predict Environmental Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACD: Calculated using Advanced Chemistry Development (ACD/Labs) Software Solaris V 4.67 (© 1994-2005 ACD/Labs).Google Scholar
  2. Alberola S, Rambaud J, Jeanjean B, Sabon F, Pauvert B (1975) Radiocrystallographic study of sulfacetamide. Trav Soc Montpellier 35(4):335–338.Google Scholar
  3. Alder CA, McArdell CS, Golet EM, Ibric S, Molnar E, Nipales NS, Giger W (2001) Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during waste water treatment and in ambient water in Switzerland. In: Doughton CG, Jones-Lepp I (eds) Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Symposium Series 791. American Chemical Society, Washington, DC, pp 56–69.CrossRefGoogle Scholar
  4. Alexy R, Schöll A, Kümpel T, Kümmerer K (2004) What do you know about antibiotics in the environment? In: Kümmerer K (ed) Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, 2nd Ed. Springer-Verlag, Berlin, pp 209–221.Google Scholar
  5. Balba MT, Khan MR, Evans WC (1979) The microbial degradation of a sulfanilamide-based herbicide (Asulam). Biochem Soc Trans 7:405–407.PubMedGoogle Scholar
  6. Battaglin WA, Furlong ET Burkhardt MR, Peter CJ (2000) Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci Total Environ 248(2–3):123–133.PubMedCrossRefGoogle Scholar
  7. Berger K, Petersen B, Büning-Pfaue H (1986) Persistenz von Arzneimitteln aus Gülle in der Nahrungskette. Archiv Lebensmittelhyg 37:99–102.Google Scholar
  8. Blough NV, Zepp RG (1995) Reactive oxygen species in chemistry. In: Foote, et al. (eds) Structure Energetics and Reactivity in Chemistry Series, vol 2. Blackie, London, pp 280–333.Google Scholar
  9. Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in the aquatic environment: a review. Aquat Sci 65(4):320–341.CrossRefGoogle Scholar
  10. Boreen AL, Arnold WA, McNeill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five membered heterocyclic groups. Environ Sci Technol 38(14):3933–3940.PubMedCrossRefGoogle Scholar
  11. Boxall ABA, Blackwell PA, Cavallo R, Kay P, Tolls J (2002a) The sorption and transport of a sulfonamide antibiotic in soil system. Toxicol Lett 131:19–28.PubMedCrossRefGoogle Scholar
  12. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ (2002b) Review of veterinary medicines in the environment. Environment Agency R + d Tech Rep P 6-012/8. Environment Agency, Bristol, UK.Google Scholar
  13. Boxall ABA, Blackwell PA, Boleas S, Halling-Sørensen B, Ingerslev F, Jacobsen AM, Kay P, Montforts MHM, Soeborg T, Ter Laak T, Tarzona JV, Tolls T (2003) Environmental risk assessment of veterinary medicines in slurry. Final report of the EU ERAVMIS Project EVK1-CT, 1999–2003. Cran field University, UK.Google Scholar
  14. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004a) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91.PubMedCrossRefGoogle Scholar
  15. Boxall ABA, Kay P, Blackwell PA, Fogg LA (2004b) Fate of veterinary medicines applied to soils. In: Kümmerer K (ed) Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, 2nd Ed. Springer-Verlag, Berlin, pp 165–180.Google Scholar
  16. Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci Total Environ 311:135–149.PubMedCrossRefGoogle Scholar
  17. Buser HR, Müller MD, Theobald N (1998) Occurrence of the pharmaceutical drug clofibric acid and the herbicide Mecoprop in various Swiss lakes and in the North Sea. Environ Sci Technol 32:188–192.CrossRefGoogle Scholar
  18. Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy. Environ Sci Technol 37:1241–1248.CrossRefGoogle Scholar
  19. Chignell CF, Kalyanaraman B, Mason RP, Sik RH (1980) Spectroscopic studies of cutaneous photosensitizing agents. I. Spin trapping of photolysis products from sulfanilamide, 4-aminobenzoic acid, and related compounds. Photochem Photobiol 32(5):563–571.CrossRefGoogle Scholar
  20. Chignell CF, Kalyanaraman B, Sik RH, Mason RP (1981) Spectroscopic studies of cutaneous photosensitizing agents. II. Spin trapping of photolysis products from sulfanilamide and 4-aminobenzoic acid using 5,5-dimethyl-1-pyrroline-1-oxide. Photochem Photobiol 34(2):147–156.Google Scholar
  21. Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil and surface waters. Acta Hydrochim Hydrobiol 31:36–44.CrossRefGoogle Scholar
  22. Clark JH, English JP, Jansen GR, Marson HW, Rogers MM, Taft WE (1958) 3-Sulfanilamido-6-alkoxypyridazines and related compounds. J Am Chem Soc 80:980–983.CrossRefGoogle Scholar
  23. Commission of European Communities (1992) Commission Directive 92/18/EEC of 20 March 1992 modifying the Annex to Council Directive 81/852/EEC on the approximation of the laws of Member States relating to analytical, pharmacotoxicological and clinical standards and protocols in respect of the testing of veterinary medical products. OFF J Eur Communities L97:1.Google Scholar
  24. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal product care products in the environment: agents of subtle change? Special report. Environ Health Perspect (Suppl) 107(6):907–938.PubMedCrossRefGoogle Scholar
  25. Deo N, Tiwari RK, Singh TP (1980) Crystallization and x-ray crystal data of sulfonamides. J Sci Res 2(2):137–139.Google Scholar
  26. EMEA (1997) European Aency for the Evaluation of Medical Products. EMEA/CVMP/055/96-Final. EMEA, London.Google Scholar
  27. EMEA (1999) Antibiotic resistance in the European Union associated with therapeutic use of veterinary medicines. European Agency for the Evaluation of Medicinal Products, London, UK, p 9.Google Scholar
  28. Espinasse J (1993) Responsible use of antimicrobials in veterinari medicine: perspective in France. Vet Microbiol 35:289–301.PubMedCrossRefGoogle Scholar
  29. FEDESA (2001) Antibiotic use in farm animals does not threaten human health. FEDESA/FEFANA press release. European Federation of Animal Health, Brüssels, July 13.Google Scholar
  30. Fjelde S, Lunestad BT, Samuelsen OB, Ervik A (1993) Photostability of oxytetracycline, nitrofurazolidone, oxolinic acid, flumequine, sulfadiazine, sulfadimethoxine, trimethoprim, and ormethoprim in seawater. Residues Vet Drugs Food Proc Residue Euro Conf 2nd 1:285–288.Google Scholar
  31. Frimmel FH, Hessler DP (1994) Photochemical degradation of triazine and amide pesticides in natural waters. In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and Surface Photochemistry. Lewis, Boca Raton, pp 137–147.Google Scholar
  32. Frisk AR (1943) Sulfanilamides: chemotherapeutic evaluation of N1-substituted sulfanilamides. Acta Med Scand, Suppl 142:1–199.Google Scholar
  33. Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J Assoc Offic Anal Chem Int 77:481–485.Google Scholar
  34. Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJ-F (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952:111–120.PubMedCrossRefGoogle Scholar
  35. Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739.PubMedCrossRefGoogle Scholar
  36. Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lützhoft HC, Jorgensen SE (1998) Occurrence, fate and effect of pharmaceutical substances in the environment: a review. Chemosphere 36:357–393.PubMedCrossRefGoogle Scholar
  37. Halling-Sørensen B, Nielsen SN, Jensen J (2002) Environmental Assessment of Veterinary Medical Products in Denmark. Danish Environmental Protection Agency, Kobenhavn, Denmark.Google Scholar
  38. Hamscher G, Powelzick HT, Höper H, Nau H (2003a) Different behavior of tetracyclines and sulfonamides in sandy soils fertilized with animal slurry. In: Abstracts, 13th Annual Meeting of SETAC Europe, May 27–June 1, 2003, Hamburg, p 72.Google Scholar
  39. Hamscher G, Powelzick HT, Sczesny S, Nau H, Hartung J (2003b) Antibiotics in dust originating from a pig fattening farm: a new source of health hazard for farmers? Environ Health Perspect 111:1590–1594.PubMedCrossRefGoogle Scholar
  40. Hamscher G, Powelzick HT, Höper H, Nau H (2004) Antibiotics in soil: routes of entry, environmental concentrations, fate and possible effects. In: Kümmerer K (ed) Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, 2nd Ed. Springer-Verlag, Berlin, pp 139–147.Google Scholar
  41. Hamscher G, Powelzick HT, Höper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24(4):861–868.PubMedCrossRefGoogle Scholar
  42. Hapeman CJ, Biboulian S, Anderson BG, Torrents A (1998) Structural influences of low-molecular-weight dissolved organic carbon mimics on the photolytic fate of atrazine. Environ Toxicol Chem 17:975–981.CrossRefGoogle Scholar
  43. Haridas M, Singh TP (1986) Crystal and molecular structure of sulfamethoxypyridazine. Ind J Chem Sect A Inorg Phys Theor Anal 25A(8):707–713.Google Scholar
  44. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17.PubMedCrossRefGoogle Scholar
  45. Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133:175–184.CrossRefGoogle Scholar
  46. Het Bestuur van de Stichting Ontwikkelings-en Saneringsfonds voor de Landbouw (1987) Bestuursbesluit van de Stichting Ontwikkelings-en Saneringsfonds voor de Landbouw. Staatscourant 245, nr. 391. Koninklijke Vermande, Leliestad, The Netherlands.Google Scholar
  47. Hill RR, Jeffs EG, Roberts DR, Wood SA (1999) Photodegradation of aryl sulfonamides: N-tosylglysine. Chem Commun 17:1735–1736.CrossRefGoogle Scholar
  48. Hirsch R, Ternes T, Heberer K, Kratz K-L (1999) Occurrence of the antibiotics in the aquatic environment. Sci Total Environ 225:109–118.PubMedCrossRefGoogle Scholar
  49. Holm JV, Ruegge K, Bjerg PL, Christensen TH (1995a) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark). Environ Sci Technol 29:1415–1420.CrossRefGoogle Scholar
  50. Holm JV, Bjerg PL, Ruegge K, Christensen TH (1995b) Response to comment on “Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark).” Environ Sci Technol 29(12):3074.CrossRefGoogle Scholar
  51. Höper H, Kues J, Nau H, Hamscher G (2002) Eintrag und Verbleib von Tieraruneimittelwirkstoffen in Böden. Bodenschutz 7:141–148.Google Scholar
  52. Höper H, Hamscher G, Powelzick HT, Schäfer W, Nau H (2003) Occurrence and fate of tetracyclines and sulfonamides in soils fertilized with animal manure. In: Proceedings of the Workshop: Diffuse input of chemicals into soil and ground water. Dresden, Feb. 26–28, 2003. Mitteilung Institut Grundwasserwirtschaft TU Dresden 3:117–124.Google Scholar
  53. Huber MM, Cannonica S, Park G-Y, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024.PubMedCrossRefGoogle Scholar
  54. Huysman E, van Renterghem B, Verstraete W (1993) Antibiotic resistant sulphitereducing Clostridia in soil and ground water as indicator of manuring practices. Water Air Soil Pollut 69:243–255.CrossRefGoogle Scholar
  55. Ingerslev F, Halling-Sørensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem 19(10):2467–2473.CrossRefGoogle Scholar
  56. Jones G, Lu LN, Fu H, Farahat CW, Oh C, Greenfield SR, Gosztola DJ, Wasielewski MR (1999) Intramolecular electron transfer across amino acid spacers in the picosecond time regime. charge-transfer interaction through peptide bonds. J Phys Chem B 103(3):572–581.CrossRefGoogle Scholar
  57. Jones OAH, Voulvoulis N, Lester JN (2001) Human pharmaceuticals in the aquatic environment: a review. Environ Technol 22:1383–1394.PubMedCrossRefGoogle Scholar
  58. Kay P, Blackwell PA, Boxall ABA (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23(5):1136–1144.PubMedCrossRefGoogle Scholar
  59. Kay P, Blackwell PA, Boxall ABA (2005) A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ Pollut 134:333–341.PubMedCrossRefGoogle Scholar
  60. Kilmes J, Mokry M (1996) TLC detection of photolytic and hydrolytic degradation products of selected antibacterial sulfonamides. J Planar Chromatogr 9:61–64.Google Scholar
  61. Kleefisch B, Kues J (1997) Das Boden-Dauerbeobachtungsprogramm von Niedersachsen. Methodik und Ergebnisse. Arbeitshefte Boden 2:1–122.Google Scholar
  62. Kolpin DW, Meyer MT, Barber LB, Zaugg SD, Furlong ET, Buxton HT (2000) A national reconnaissance for antibiotics and hormones in streams of the United States. Presented at SETAC 21st Annual Meeting in North America, Nashville, TN, November 12–16, 2000.Google Scholar
  63. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams. Environ Sci Technol 36:1202–1211.PubMedCrossRefGoogle Scholar
  64. Kravchenya NA (1989) Selective N-acylation of 4-aminobenzenesulfonamide. Khimiko-Farmtsevticheskii Zh 23(4):454–456.Google Scholar
  65. Krepper TP, Kirchhöfer F, Leichter I, Maes A, Wilken RD (1999) Metabolism studies of phenylsulfonamides relevant for water works. Environ Sci Technol 33:945–950.CrossRefGoogle Scholar
  66. Krieger MS, Yoder RN, Gibson R (2000) Photolytic degradation of florasulam on soil and in water. J Agric Food Chem 48:3710–3717.PubMedCrossRefGoogle Scholar
  67. Krishida K, Nishinari K, Furusawa N (2005) Liquid chromatographic determination of sulfamonomethoxine, sulfadimethoxine, and their N4-acetyl metabolites in chicken plasma. Chromatographia 61(1/2):81–84.CrossRefGoogle Scholar
  68. Kümmerer K, Al Ahmed A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710.PubMedCrossRefGoogle Scholar
  69. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498.CrossRefGoogle Scholar
  70. Langhammer JP (1989) Untersuchungen zum Verbleib antimikrobiell wirksamer Arzeistoffe als Rückstände in Gülle und im landwirtschaftlichen Umfeld. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.Google Scholar
  71. Langhammer JP, Büning-Pfaue H (1989) Bewertung von Arzneistoff-Rückständen aus der Gülle im Boden. Lebensmittelchem Gerichtl Chem 43:103–113.Google Scholar
  72. Langhammer JP, Büning-Pfaue H, Winkelmann J, Körner E (1988) Chemotherapeutika: Rückstände und Resistenzverhalten bei der Bestandsbehandlung von Sauen post partum. Tierärztl Umschau 43:375–382.Google Scholar
  73. Langhammer JP, Führ F, Büning-Pfaue H (1990) Verbleib von Sulfonamid-Rückständen aus der Gülle in Boden und Nutzpflanze. Lebensmittelchem Gerichtl Chem 44:93.Google Scholar
  74. Latch DE, Stender BL, Packer JL, Arnold WA, McNeil K (2003) Photochemical fate of pharmaceuticals in the environment: climetidine and ranitidine. Environ Sci Technol 37(15):3342–3350.PubMedCrossRefGoogle Scholar
  75. Lawrence MAM, Davies NA, Edwards PA, Taylor MG, Simkiss K (2000) Can adsorption isotherms predict sediment bioavailability? Chemosphere 41:1091–1100.PubMedCrossRefGoogle Scholar
  76. Lindsey ME, Meyer M, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646.PubMedCrossRefGoogle Scholar
  77. Löscher W, Ungemach FR, Kroker R (2002) Pharmakotherapie bei Haus-und Nutztieren. 5. Auflage. Parey, Buchverlag, p 550.Google Scholar
  78. Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225.CrossRefGoogle Scholar
  79. Mansour M, Feicht EA, Behechti A, Scheunert I (1997) Experimental approaches to studying the photostability of selected pesticides in water and soil. Chemosphere 35:39–50.CrossRefGoogle Scholar
  80. Maton A, Daelemans J, Lambrecht J (1983) De Huisvesting van Dieren. Rijksstation Voor Landbouwtechniek, Merelbeke, Belgium.Google Scholar
  81. Mazel D, Davies J (1999) Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754.PubMedCrossRefGoogle Scholar
  82. Migliore LG, Brambilla S, Cozzolino S, Gaudio L (1995) Effect on plants of sulfadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativumand and Zea mays). Agric Ecosyst Environ 52:103–110.CrossRefGoogle Scholar
  83. Migliore LG, Brambilla S, Casoria P, Civitareale SC, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum disticum L., Poaceae, Liliopsida). Agric Ecosyst Environ 60:121–128.CrossRefGoogle Scholar
  84. Mill T (1999) Predicting photoreaction rates in surface waters. Chemosphere 38(6):1379–1390.CrossRefGoogle Scholar
  85. Mill T, Maybey W (1985) Photochemical transformations. Environ Exposure Chem 1:175–216.Google Scholar
  86. Ministers für Umwelt, Raumordnung und Landwirtshaft des Landes Nordrhein-Westfalen (1985) Umweltschutz und Landwirtschaft Teil 2: Die Gülleverordnung. Schriftenreihe des Ministers für Umwelt, Raumordnung und Landwirtshaft des Landes Nordrhein-Westfalen, Düsseldorf, Germany.Google Scholar
  87. Moore DE (1987) Principle and practice of drug photodegradation studies. J Pharmacol Biomed Anal 5(5):441–453.CrossRefGoogle Scholar
  88. Moore DE, Zhou W (1994) Photodegradation of sulfamethoxazole: a chemical system capable of monitoring seasonal changes in UVB intensity. Photochem Photobiol 59(5):497–502.PubMedCrossRefGoogle Scholar
  89. Motten AG, Chignell CF (1983) Spectroscopic studies of cutaneous photosensitizing agents. III. Spin trapping of photolysis products from sulfanilamide analogs. Photochem Photobiol 37(1):17–26.PubMedCrossRefGoogle Scholar
  90. Mudd AJ, Lawrence K, Walton J (1998) Study of Sweden’s model on antimicrobial use shows usage has increased since 1986 ban. Feedstuffs 10.Google Scholar
  91. Müller SR, Singer H, Stoob K, Burkhardt M, Hartmann N, Götz C, Stamm C, Waul C (2003) Occurrence and fate of antibiotics in manure, soil and water. Mitt Lebensm Hyg 94(6):574–578.Google Scholar
  92. Neuman M (1981) Antibiotika Kopendium. Verlag Hans Huber, Bern, Stuttgart, Vienna.Google Scholar
  93. NOAH (2002) Sales of antimicrobiological products used as veterinary medicines, growth promoters and coccidiostats in the UK in 2000. National Office of Animal Health, UK.Google Scholar
  94. Nowara A, Burhenne J, Spiteller M (1997) Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J Agric Food Chem 45:1459–1463.CrossRefGoogle Scholar
  95. OECD (2000) Organization for Co-operation and Development (OECD) guidelines for testing of chemicals, test guideline 106. Adsorption/desorption using a batch equilibrium method. Revised draft document. OECD, Paris, pp 1–26.Google Scholar
  96. Packer JL, Werner JJ, Latch DE, McNeil K, Arnold WA (2003) Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid and ibuprofen. Aquat Sci 65(4):342–351.CrossRefGoogle Scholar
  97. Pinck LA, Soulides DA, Allison FE (1962) Antibiotics in soils: 4. Polypeptides and macrolides. Soil Sci 94:129–131.CrossRefGoogle Scholar
  98. Rang HP, Dule MM, Ritter JM (1995) Pharmacology, 3rd Ed. Churchill Livingstone, London.Google Scholar
  99. Roblin RO Jr, Winnek PS, English JP (1942) Chemotherapy IV. Sulfanilamidopyrimidines. J Am Chem Soc 64:567–570.CrossRefGoogle Scholar
  100. Rouchaud J, Gustin F, Roisin C, Grevy L, Raimond Y (1993) Effects of organic fertilizers on aldicarb soil biodegradation in sugar beet crops. Arch Environ Contam Toxicol 24:67–74.PubMedCrossRefGoogle Scholar
  101. Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in ground-waters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938:199–210.PubMedCrossRefGoogle Scholar
  102. Saha S, Kulshrestha G (2002) Degradation of sulfuron, a sulfnylurea herbicide, as influenced by abiotic factors. J Agric Food Chem 50(16):4572–4575.PubMedCrossRefGoogle Scholar
  103. Samuelsen OB, Torsvik V, Ervik A (1992) Long-range changes in oxytetracycline concentration and bacterial resistance toward oxytetracycline in a fish farm sediment after medication. Sci Total Environ 114:25–36.PubMedCrossRefGoogle Scholar
  104. Samuelsen OB, Lunestad BT, Ervik A, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126:283–290.CrossRefGoogle Scholar
  105. Saxena AK, Seydel JK (1980) QSAR studies of potential antimalarial sulfonamide partitioning into erythrocytes. Eur J Med Chem 15(3):241–246.Google Scholar
  106. Schulten H-R, Leinweber P (2000) New insights into organic-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30: 399–432.CrossRefGoogle Scholar
  107. Sekhon BS, Sahai HK, Randhawa HS (2001) On the coordinating behaviour of sulphamethoxazole towards some metal ions. Proc Natl Acad Sci India Sect A Phys Sci 71(3):195–203.Google Scholar
  108. Sigel CW (1983) Disposition and metabolism of trimethoprim, tetroxoprim, sulfamethoxazole and sulfadiazine. Handb Exp Pharmacol 64:163–184.Google Scholar
  109. Spaepen KRI, Van Leemput LJJ, Wislocki PG, Verschueren C (1997) A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environ Toxicol Chem 16(9):1977–1982.CrossRefGoogle Scholar
  110. Stan H-J, Heberer T (1997) Pharmaceuticals in the environment. Analysis 25:20–23.Google Scholar
  111. Strek HJ (1998a) Fate of chlorsulfuron in the environment. 1. Laboratory evaluations. Pestic Sci 53:29–51.CrossRefGoogle Scholar
  112. Strek HJ (1998b) Fate of chlorsulfuron in the environment. 2. Field evaluations. Pestic Sci 53:52–70.CrossRefGoogle Scholar
  113. Stumpf M, Ternes TA, Wilken RD, Rodgrigues SV, Bauman W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225(1–2):135–141.PubMedCrossRefGoogle Scholar
  114. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260.CrossRefGoogle Scholar
  115. Teuber M (1999) Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci 56:755–763.PubMedCrossRefGoogle Scholar
  116. Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opinion Microbiol 4:493–499.CrossRefGoogle Scholar
  117. Thiele S (2000) Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. J Plant Nutr Soil Sci 163:589–594.CrossRefGoogle Scholar
  118. Thiele S, Seibicke T, Leinweber P (2002) Sorption of sulfonamide antibiotic pharmaceuticals in soil particle size fractions. SETAC 12th Meeting, May 12–16, 2002, Vienna.Google Scholar
  119. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils: a review. J Plant Nutr Soil Sci 166:145–167.CrossRefGoogle Scholar
  120. Thiele-Bruhn S, Aust M-O (2004) Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Contam Toxicol 47:31–39.PubMedCrossRefGoogle Scholar
  121. Thiele-Bruhn S, Seibicke T, Schulten H-R, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331–1342.PubMedCrossRefGoogle Scholar
  122. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35(17):3397–3406.PubMedCrossRefGoogle Scholar
  123. Tolls J, Gebbink W, Cavallo R (2002) pH-dependence of sulfonamide antibiotic sorption: data and model evaluation. SETAC 12th Annual Meeting, May 12–16, 2002, Vienna.Google Scholar
  124. Tsao R, Eto M (1994) Effect of some natural photosensitizers on photolysis of some pesticides. In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and Surface Photochemistry. Lewis, Boca Raton, pp 137–147.Google Scholar
  125. van Dijk J, Keukens HJ (2000) The stability of some veterinary drugs and coccidiostats during composting and storage of laying hen and broiler faeces. In: van Ginkel LA, Ruiter A (eds) Residues of Veterinary Drugs in Food. Proceedings of the Eur Residue IV Conference, Veldhoven, The Netherlands, May 8–10, 2000.Google Scholar
  126. Vetter H, Steffens G (1986) Wirtschaftseigene Düngung. Verlagsunion AGRAR: DLG-Verlag, Frankfurt am Main.Google Scholar
  127. Vicary A, Landy R, Genthner F, Morales R (1999) Antimicrobials used in animal feedlots: targetting research on microbial resistance. Presented at the 20th SETAC Meeting, Philadelphia, PA, Nov. 15–19, 1999.Google Scholar
  128. Walker N (1978) A soil Flavobacterium sp. that degrades sulfonamides and asulam. J Appl Bacteriol 45:125–129.PubMedGoogle Scholar
  129. Watkins DAM (1979) Photochemical studies on pesticides. Pestic Sci 10:181–182.CrossRefGoogle Scholar
  130. Weiss B, Durr H, Hass HJ (1980) Photochemistry of sulfonamides and sulfonylureas: a contribution to the problem of light-induced dermatoses. Angew Chem 19(8):648–650.CrossRefGoogle Scholar
  131. Woolley JL, Sigel CW (1979) Metabolism and disposition by the rat of 35Ssulfadiazine alone and in the presence of trimethoprim. Drug Metab Dispos 7(2):94–99.PubMedGoogle Scholar
  132. Woolley JL, Sigel CW, Wels CM (1980) Novel deaminated sulfadiazine metabolites in neonatal calf tissue, plasma, and urine following oral treatment with 14C-sulfadiazine. Life Sci 27:1819–1826.PubMedCrossRefGoogle Scholar
  133. WRc-NSF (2000) The development of a model for estimating the environmental concentrations (PECs) of veterinary medicines in soil following manure spreading (project code VM0295). Final Project Report to MAFF.Google Scholar
  134. Yang L, Yang X, Liu J, Li Y, Lou Q, Liu Q (2003) Synthesis, characterization and susceptibility of bacteria against sulfamethoxydiazine complexes of copper(II), zinc(II), nickel(II), cadmium(II), chromium(III) and iron(III). J Coord Chem 56(13):1131–1139.CrossRefGoogle Scholar
  135. Yang S, Cha J, Carlson K (2004) Quantitative determination of trace concentrations of tetracycline and sulfonamide antibiotics in surface water using solid-phase extraction and liquid chromatography/ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom 18:2131–2145.PubMedCrossRefGoogle Scholar
  136. Zepp RG, Cline DM (1977) Rates of direct photolysis in aquatic environment. Environ Sci Technol 11(4):359–366.CrossRefGoogle Scholar
  137. Zhou W, Moore DE (1994) Photochemical decomposition of sulfamethoxazole. Int J Pharmacol 110(1):55–63.CrossRefGoogle Scholar
  138. Zhou W, Moore DE (1997) Photosensitizing activity of the anti-bacterial drugs sulfamethoxazole and trimethoprim. J Photochem Photobiol B 39(1):63–72.PubMedCrossRefGoogle Scholar
  139. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Premasis Sukul
    • 1
  • Michael Spiteller
    • 1
  1. 1.Institute of Environmental ResearchUniversity of DortmundDortmundGermany

Personalised recommendations