Skip to main content

Prediction of Dipeptidyl Peptidase (DP) 8 Structure by Homology Modelling

  • Conference paper
Dipeptidyl Aminopeptidases

5. Conclusions

The DP8 model produced was very similar to the DPIV structure in the α/β hydrolase domain. Analysis of the active site of the DP8 model revealed significant structural conservation in the catalytic triad between DPIV, PEP and ACPH. Further analysis is required to determine whether any differences in the substrate pockets or substrate access tunnel(s) may contribute to DP8’s ability to act as a dipeptidyl peptidase, endopeptidase and acylaminoacyl peptidase. As the structure of fibroblast activation protein has recently been published, an alternative model may be made using this structure together with DPIV to make a model based on two enzymatically active proteins. Simulated docking of substrates and inhibitors into the model may uncover subtle differences between the structures. This may aid in determining the reason for DP8’s multiple enzyme functionality and aid in the improvement of DPIV inhibitor specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, CA and Gorrell, MD (2002) In Ectopeptidases (Langner J and Ansorge S, Eds) Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Abbott, CA, Yu, DMT, Woollatt, E, Sutherland, G, McCaughan, GW and Gorrell, MD, 2000, Cloning, expression and chromosomal localization of a novel dipeptidyl peptidase (DPP) IV homolog, DPP8. E J Biochem 267: 6140–6150.

    Article  CAS  Google Scholar 

  • Aertgeerts, K, Levin, I, Shi, L, Snell, GP, Jennings, A, Prasad, GS, Zhang, Y, Kraus, ML, Salakian, S, Sridhar, V, Wijands, R and Tennant, MG, 2005, Structural and Kinetic Analysis of the Substrate Specificity of Human Fibroblast Activation Protein Alpha. J Biol Chem In Press.

    Google Scholar 

  • Baker, EN, Arcus, VL and Lott, JS, 2003, Protein structure prediction and analysis as a tool for functional genomics. App Bioinf 2: S3–10.

    CAS  Google Scholar 

  • Bartlam, M, Wang, G, Yang, H, Gao, R, Zhao, X, Xie, G, Cao, S, Feng, Y and Rao, Z, 2004, Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure 12: 1481–8.

    Article  CAS  PubMed  Google Scholar 

  • Bjelke, JR, Christensen, J, Branner, S, Wagtmann, N, Olsen, C, Kanstrup, AB and Rasmussen, HB, 2004, Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 279: 34691–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y, Chien, C, Goparaju, C, Hsu, J, Liang, P and Chen, X, 2004, Purification and characterization of human prolyl dipeptidyl peptidase DP8 in Sf9 insect cells. Prot Exp Pur 35: 142–146.

    Article  CAS  Google Scholar 

  • Collaborative Computational Project, N, 1994, The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst D50: 760–763.

    Google Scholar 

  • DeLano, W, 2002, The PyMOL User’s Manual, San Carlos, Ca, USA.

    Google Scholar 

  • Fulop, V, Bocskei, Z and Polgar, L, 1998, Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 94: 161–70.

    Article  CAS  PubMed  Google Scholar 

  • Jones, TA, Zou, JY and Kjeldegaard, C, 1999, Improved Methods for binding protein models in electron density maps and the location of errors in these models. Acta Cryst. A47: 110–119.

    Google Scholar 

  • Park, J, Ajami, K and Gorrell, MD (2005) Dipeptidyl peptidase 8 has post-proline dipeptidyl aminopeptidase, prolyl endopeptidase and acyl aminoacyl peptidase activities, In 2nd International Conference on Dipeptidyl Aminopeptidases.

    Google Scholar 

  • Rasmussen, H, Branner, S, Wiberg, F and Wagtmann, N, 2002, Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 10: 19–25.

    Article  Google Scholar 

  • Sali, A and Blundell, TL, 1993, Comparative protein modelling by satisfaction of spatial restraints. J M Biol 234: 779–815.

    Article  CAS  Google Scholar 

  • Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F and G., HD, 1997, The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876–4882.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Pitman, M.R., Menz, R.I., Abbott, C.A. (2006). Prediction of Dipeptidyl Peptidase (DP) 8 Structure by Homology Modelling. In: Lendeckel, U., Reinhold, D., Bank, U. (eds) Dipeptidyl Aminopeptidases. Advances in Experimental Medicine and Biology, vol 575. Springer, Boston, MA . https://doi.org/10.1007/0-387-32824-6_4

Download citation

Publish with us

Policies and ethics