Advertisement

Type-II Transmembrane Prolyl Dipeptidases and Matrix Metalloproteinases in Membrane Vesicles of Active Endothelial Cells

  • Monica Salamone
  • Mirko Siragusa
  • Mario Nasca
  • Laura Pitarresi
  • Maria L. Vittorelli
  • Wen-Tien Chen
  • Guilio Ghersi
Part of the Advances in Experimental Medicine and Biology book series (volume 575)

5. Conclusions

Endothelia cells in sparse culture are migratory and increase the production of gelatinases of serine- and metallo-classes in membrane vesicles. Collectively, proteases associated with membrane vesicles degrade extracellular matrix components including type-I and type-IV collagens, laminin and fibronectin. Inhibitor studies suggest the existence of small gelatinases that were derived from these serine- and metallo-proteases. Thus, further studies are warranted to demonstrate the cooperative action of metallo- and serine proteases on cell surfaces and in extracellular vesicles during endothelial cell migration in 3D collagenous matrices, and potential proteolytic activation mechanism for these cell surface proteases.

Keywords

Membrane Vesicle Gelatin Zymography Follicular Thyroid Carcinoma Dipeptidyl Peptidase Gelatinolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimes RT, Zijlstra A, Hooper JD, Ogbourne SM, Sit ML, Fuchs S, Gotley DC, Quigley JP and Antalis TM, 2003, Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb Haemost. 89: 561–572.PubMedGoogle Scholar
  2. Brooks PC, Clark RAF and Cheresh DA, 1994, Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 264: 569–571.CrossRefPubMedGoogle Scholar
  3. Brooks PC, Silletti S, Von Schalscha TL, Friedlander M and Cheresh DA, 1998, Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell. 92: 391–400.CrossRefPubMedGoogle Scholar
  4. Chen WT and Kelly T, 2003, Seprase complexes in cellular invasiveness. Canc Metast Rev. 22: 259–269.CrossRefGoogle Scholar
  5. Chen WT, Kelly T and Ghersi G, 2003, DPPIV, seprase, and related serine peptidases in multiple cellular functions. Curr Top Dev Biol. 54: 207–232.PubMedGoogle Scholar
  6. Dainiak N, 1991, In utero transplantation of hematopoietic stem cells. Blood Cells. 17: 376–378.PubMedGoogle Scholar
  7. Dainiak N, 1991a, Surface membrane-associated regulation of cell assembly, differentiation, and growth. Blood. 78: 264–276.PubMedGoogle Scholar
  8. D’Angelo M, Billings PC, Pacifici M, Leboy PS and Kirsch T, 2001, Authentic matrix vesicles contain active metalloproteases (MMP). a role for matrix vesicle-associated MMP-13 in activation of transforming growth factor-beta. J Biol Chem. 276: 11347–11353.CrossRefPubMedGoogle Scholar
  9. Dolo V, Ginestra A, Ghersi G, Nagase H and Vittorelli ML, 1994, Human breast carcinoma cells cultured in the presence of serum shed membrane vesicles rich in gelatinolytic activities. J Submicroscopic Cytol Pathol. 26: 173–180.Google Scholar
  10. Dolo V, Pizzurro P, Ginestra A and Vittorelli ML, 1995, Inhibitory effects of vesicles shed by human breast carcinoma cells on lymphocyte 3H-thymidine incorporation, are neutralised by anti TGF-beta antibodies. J Submicroscopic Cytol Pathol. 27: 535–541.Google Scholar
  11. Dolo V, Ginestra A, Cassara D, Violini S, Lucania G, Torrisi MR, Nagase H, Canevari S, Pavan A and Vittorelli ML, 1998, Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res. 58: 4468–4474.PubMedGoogle Scholar
  12. Ghersi G, Chen W, Lee EW and Zukowska Z, 2001, Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated endothelial cell migration in response to wounding. Peptides. 22: 453–458.CrossRefPubMedGoogle Scholar
  13. Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS and Chen WT, 2002, Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem. 277: 29231–29241.CrossRefPubMedGoogle Scholar
  14. Hirai K, Kotani T, Aratake Y, Ohtaki S and Kuma K, 1999, Dipeptidyl peptidase IV (DPP IV/CD26) staining predicts distant metastasis of ‘benign’ thyroid tumor. Pathol Int. 49: 264–265.CrossRefPubMedGoogle Scholar
  15. Hiraoka N, Allen E, Apel IJ, Gyetko MR and Weiss SJ, 1998, Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 95: 365–377.CrossRefPubMedGoogle Scholar
  16. Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal-Hansen H, Allen ED, Hiraoka N and Weiss SJ, 2002, Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and-independent processes. J Exp Med. 195: 295–308.CrossRefPubMedGoogle Scholar
  17. Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, Scharpe S, Van Damme J and De Meester I, 2001, Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem. 276: 29839–29845.CrossRefPubMedGoogle Scholar
  18. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM, Muller E, Rettig WJ and Gorrell MD, Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology. 29: 1768–1778.Google Scholar
  19. Mueller SC, Ghersi G, Akiyama SK, Sang QX, Howard L, Pineiro-Sanchez M, Nakahara H, Yeh Y and Chen WT, 1999, A novel protease-docking function of integrin at invadopodia. J Biol Chem. 274: 24947–24952.CrossRefPubMedGoogle Scholar
  20. Nawrocki-Raby B, Gilles C, Polette M, Bruyneel E, Laronze JY, Bonnet N, Foidart JM, Mareel M and Birembaut P, 2003, Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Canc. 105: 790–795.CrossRefGoogle Scholar
  21. Netzel-Arnett S, Mitola DJ, Yamada SS, Chrysovergis K, Holmbeck K, Birkedal-Hansen H and Bugge TH, 2002, Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J Biol Chem. 277: 45154–45161.CrossRefPubMedGoogle Scholar
  22. Pepper MS, Sappino A-P, Stöcklin R, Montesano R, Orci L and Vassalli J-D, 1993, Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol. 122: 673–684.CrossRefPubMedGoogle Scholar
  23. Pineiro-Sanchez ML, Goldstein LA, Dodt J, Howard L, Yeh Y, Tran H, Argraves WS and Chen WT, 1997, Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J Biol Chem. 272: 7595–7601.CrossRefPubMedGoogle Scholar
  24. Poste G and Nicolson GL, 1980, Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA. 77: 399–403.CrossRefPubMedGoogle Scholar
  25. Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A and Dolo V, 2002, Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol. 160: 673–680.PubMedGoogle Scholar
  26. Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, Rone J, Movafagh S, Ji H, Yeh Y, Chen WT, Kleinman H K, Grouzmann E and Grant DS, 1998, Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circulation Res. 83: 187–195.PubMedGoogle Scholar
  27. Zucker S, Wieman JM, Lysik RM, Wilkie DP, Ramamurthy N and Lane B, 1987, Metastatic mouse melanoma cells release collagen-gelatin degrading metalloproteinases as components of shed membrane vesicles. Biochim Biophys Acta. 924: 225–237.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Monica Salamone
    • 2
  • Mirko Siragusa
    • 2
  • Mario Nasca
    • 2
  • Laura Pitarresi
    • 2
  • Maria L. Vittorelli
    • 2
  • Wen-Tien Chen
    • 1
  • Guilio Ghersi
    • 2
  1. 1.Department of MedicineStony Brook UniversityNew YorkUSA
  2. 2.Dipartimento di Biologia Cellulare e dello SviluppoUniversità di PalermoPalermoItaly

Personalised recommendations