Skip to main content

Type-II Transmembrane Prolyl Dipeptidases and Matrix Metalloproteinases in Membrane Vesicles of Active Endothelial Cells

  • Conference paper
Dipeptidyl Aminopeptidases

5. Conclusions

Endothelia cells in sparse culture are migratory and increase the production of gelatinases of serine- and metallo-classes in membrane vesicles. Collectively, proteases associated with membrane vesicles degrade extracellular matrix components including type-I and type-IV collagens, laminin and fibronectin. Inhibitor studies suggest the existence of small gelatinases that were derived from these serine- and metallo-proteases. Thus, further studies are warranted to demonstrate the cooperative action of metallo- and serine proteases on cell surfaces and in extracellular vesicles during endothelial cell migration in 3D collagenous matrices, and potential proteolytic activation mechanism for these cell surface proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aimes RT, Zijlstra A, Hooper JD, Ogbourne SM, Sit ML, Fuchs S, Gotley DC, Quigley JP and Antalis TM, 2003, Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb Haemost. 89: 561–572.

    CAS  PubMed  Google Scholar 

  • Brooks PC, Clark RAF and Cheresh DA, 1994, Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 264: 569–571.

    Article  CAS  PubMed  Google Scholar 

  • Brooks PC, Silletti S, Von Schalscha TL, Friedlander M and Cheresh DA, 1998, Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell. 92: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Chen WT and Kelly T, 2003, Seprase complexes in cellular invasiveness. Canc Metast Rev. 22: 259–269.

    Article  Google Scholar 

  • Chen WT, Kelly T and Ghersi G, 2003, DPPIV, seprase, and related serine peptidases in multiple cellular functions. Curr Top Dev Biol. 54: 207–232.

    CAS  PubMed  Google Scholar 

  • Dainiak N, 1991, In utero transplantation of hematopoietic stem cells. Blood Cells. 17: 376–378.

    CAS  PubMed  Google Scholar 

  • Dainiak N, 1991a, Surface membrane-associated regulation of cell assembly, differentiation, and growth. Blood. 78: 264–276.

    CAS  PubMed  Google Scholar 

  • D’Angelo M, Billings PC, Pacifici M, Leboy PS and Kirsch T, 2001, Authentic matrix vesicles contain active metalloproteases (MMP). a role for matrix vesicle-associated MMP-13 in activation of transforming growth factor-beta. J Biol Chem. 276: 11347–11353.

    Article  CAS  PubMed  Google Scholar 

  • Dolo V, Ginestra A, Ghersi G, Nagase H and Vittorelli ML, 1994, Human breast carcinoma cells cultured in the presence of serum shed membrane vesicles rich in gelatinolytic activities. J Submicroscopic Cytol Pathol. 26: 173–180.

    CAS  Google Scholar 

  • Dolo V, Pizzurro P, Ginestra A and Vittorelli ML, 1995, Inhibitory effects of vesicles shed by human breast carcinoma cells on lymphocyte 3H-thymidine incorporation, are neutralised by anti TGF-beta antibodies. J Submicroscopic Cytol Pathol. 27: 535–541.

    CAS  Google Scholar 

  • Dolo V, Ginestra A, Cassara D, Violini S, Lucania G, Torrisi MR, Nagase H, Canevari S, Pavan A and Vittorelli ML, 1998, Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res. 58: 4468–4474.

    CAS  PubMed  Google Scholar 

  • Ghersi G, Chen W, Lee EW and Zukowska Z, 2001, Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated endothelial cell migration in response to wounding. Peptides. 22: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS and Chen WT, 2002, Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem. 277: 29231–29241.

    Article  CAS  PubMed  Google Scholar 

  • Hirai K, Kotani T, Aratake Y, Ohtaki S and Kuma K, 1999, Dipeptidyl peptidase IV (DPP IV/CD26) staining predicts distant metastasis of ‘benign’ thyroid tumor. Pathol Int. 49: 264–265.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka N, Allen E, Apel IJ, Gyetko MR and Weiss SJ, 1998, Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 95: 365–377.

    Article  CAS  PubMed  Google Scholar 

  • Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal-Hansen H, Allen ED, Hiraoka N and Weiss SJ, 2002, Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and-independent processes. J Exp Med. 195: 295–308.

    Article  CAS  PubMed  Google Scholar 

  • Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, Scharpe S, Van Damme J and De Meester I, 2001, Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem. 276: 29839–29845.

    Article  CAS  PubMed  Google Scholar 

  • Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM, Muller E, Rettig WJ and Gorrell MD, Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology. 29: 1768–1778.

    Google Scholar 

  • Mueller SC, Ghersi G, Akiyama SK, Sang QX, Howard L, Pineiro-Sanchez M, Nakahara H, Yeh Y and Chen WT, 1999, A novel protease-docking function of integrin at invadopodia. J Biol Chem. 274: 24947–24952.

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki-Raby B, Gilles C, Polette M, Bruyneel E, Laronze JY, Bonnet N, Foidart JM, Mareel M and Birembaut P, 2003, Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Canc. 105: 790–795.

    Article  CAS  Google Scholar 

  • Netzel-Arnett S, Mitola DJ, Yamada SS, Chrysovergis K, Holmbeck K, Birkedal-Hansen H and Bugge TH, 2002, Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J Biol Chem. 277: 45154–45161.

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS, Sappino A-P, Stöcklin R, Montesano R, Orci L and Vassalli J-D, 1993, Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol. 122: 673–684.

    Article  CAS  PubMed  Google Scholar 

  • Pineiro-Sanchez ML, Goldstein LA, Dodt J, Howard L, Yeh Y, Tran H, Argraves WS and Chen WT, 1997, Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J Biol Chem. 272: 7595–7601.

    Article  CAS  PubMed  Google Scholar 

  • Poste G and Nicolson GL, 1980, Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA. 77: 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A and Dolo V, 2002, Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol. 160: 673–680.

    CAS  PubMed  Google Scholar 

  • Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, Rone J, Movafagh S, Ji H, Yeh Y, Chen WT, Kleinman H K, Grouzmann E and Grant DS, 1998, Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circulation Res. 83: 187–195.

    CAS  PubMed  Google Scholar 

  • Zucker S, Wieman JM, Lysik RM, Wilkie DP, Ramamurthy N and Lane B, 1987, Metastatic mouse melanoma cells release collagen-gelatin degrading metalloproteinases as components of shed membrane vesicles. Biochim Biophys Acta. 924: 225–237.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Salamone, M. et al. (2006). Type-II Transmembrane Prolyl Dipeptidases and Matrix Metalloproteinases in Membrane Vesicles of Active Endothelial Cells. In: Lendeckel, U., Reinhold, D., Bank, U. (eds) Dipeptidyl Aminopeptidases. Advances in Experimental Medicine and Biology, vol 575. Springer, Boston, MA . https://doi.org/10.1007/0-387-32824-6_22

Download citation

Publish with us

Policies and ethics