Skip to main content

Studies of Twins

What Can They Tell Us about the Developmental Origins of Adult Health and Disease?

  • Chapter
Early Life Origins of Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

Abstract

There is still limited understanding of the causal pathways underlying the observed association between exposures during fetal life and later health and disease in humans. Without better understanding we cannot estimate public health implications and assess the potential for intervention.

Study of twins should help us understand more about the role of factors shared by both twins versus factors affecting the individual fetus, the role of genetic factors, the role of placental factors, and which aspects or consequences of postnatal growth are associated with increased risk of later cardiovascular disease.

Generalisability of data from twin studies is open to question, but there is evidence that birth size — cardiovascular disease risk associations are similar in twins to those generally observed in singletons, suggesting that similar causal pathways are involved and study of twins will be informative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker DJP. Programming the baby. Mothers, babies and health in later life. Edinburgh: Churchill Livingstone, 1998:13–41.

    Google Scholar 

  2. Morley R, Owens J, Blair E et al. Is birthweight a good marker for gestational exposures that increase risk of adult disease? Paediatr Perinat Epidemiol 2002; 16:194–199.

    Article  PubMed  Google Scholar 

  3. Morley R, Carlin JB, Dwyer T. Maternal calcium supplementation and cardiovascular risk factors in twin offspring. Int J Epidemiol (doi:10.1093/ije/dyh284).

    Google Scholar 

  4. Henriksen T, Clausen T. The fetal origins hypothesis: Placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet Gynecol Scand 2002; 81:112–114.

    Article  PubMed  Google Scholar 

  5. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol 2001; 30:15–23.

    Article  PubMed  CAS  Google Scholar 

  6. Speirs HJ, Secki JR, Brown RW. Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critial periods of glucocorticoid susceptibility during development. J Endocrinol 2004; 181:105–116.

    Article  PubMed  CAS  Google Scholar 

  7. Meinhardt U, Mullis PE. The essential role of the aromatase/p450arom. Semin Reprod Med 2002; 20:277–284.

    Article  PubMed  CAS  Google Scholar 

  8. Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 2004; 43:487–514.

    Article  PubMed  CAS  Google Scholar 

  9. Lawlor DA, Davey Smith G, Ebrahim S. Life course influences on insulin resistance: Findings from the British Women’s Heart and Health Study. Diabetes Care 2003; 26:97–103.

    PubMed  Google Scholar 

  10. Fall CH, Vijayakumar M, Barker DJ et al. Weight in infancy and prevalence of coronary heart disease in adult life. BMJ 1995; 310:17–19.

    PubMed  CAS  Google Scholar 

  11. Eriksson JG, Forsen T, Tuomilehto J et al. Early growth and coronary heart disease in later life: Longitudinal study. BMJ 2001; 322:949–953.

    Article  PubMed  CAS  Google Scholar 

  12. Stettler N, Zemel BS, Kumanyika S et al. Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics 2002; 109:194–199.

    Article  PubMed  Google Scholar 

  13. Singhal A, Lucas A. Early origins of cardiovascular disease: Is there a unifying hypothesis? Lancet 2004; 363:1642–1645.

    Article  PubMed  Google Scholar 

  14. Ong KK, Ahmed ML, Emmett PM et al. Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. BMJ 2000; 320:967–971.

    Article  PubMed  CAS  Google Scholar 

  15. Forsen T, Eriksson J, Tuomilehto J et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133:176–182.

    PubMed  CAS  Google Scholar 

  16. Dwyer T, Blizzard L, Venn A et al. Syndrome X in 8 year-old Australian children: Stronger associations with current body fatness than with infant size or growth. Int J Obes Relat Metab Disord 2002; 26:1301–1309.

    Article  PubMed  CAS  Google Scholar 

  17. Cole TJ. Modelling postnatal exposures and their interactions with birth size. J Nutr 2004; 134:201–204.

    PubMed  CAS  Google Scholar 

  18. Monteiro PO, Victora CG, Barros FC et al. Birth size, early childhood growth, and adolescent obesity in a Brazilian birth cohort. Int J Obes Relat Metab Disord 2003; 27:1274–1282.

    Article  PubMed  CAS  Google Scholar 

  19. Wannamethee SG, Lawlor DA, Whincup PH et al. Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood: Cross sectional survey. Diabetologia 2004; 47:12–18.

    Article  PubMed  CAS  Google Scholar 

  20. Lawlor DA, Davey Smith G, Ebrahim S. Birth weight of offspring and insulin resistance in late adulthood: Cross sectional survey. BMJ 2002; 325:359.

    Article  PubMed  Google Scholar 

  21. Li HL, Liu DP, Liang CC. Paraoxonase gene polymorphisms, oxidative stress, and diseases. J Mol Med 2003; 81:766–779.

    Article  PubMed  CAS  Google Scholar 

  22. Cambien F, Leger J, Mallet C et al. Angiotensin I-converting enzyme gene polymorphism modulates lates the consequences of in utero growth retardation on plasma insulin in young adults. Diabetes 1998; 47:470–475.

    PubMed  CAS  Google Scholar 

  23. Garces C, Benavente M, Ortega H et al. Influence of birth weight on the apo E genetic determinants of plasma lipid levels in children. Pediatr Res 2002; 52:873–878.

    Article  PubMed  CAS  Google Scholar 

  24. Eriksson JG, Lindi V, Uusitupa M et al. The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes 2002; 51:2321–2324.

    PubMed  CAS  Google Scholar 

  25. Kubaszek A, Markkanen A, Eriksson JG et al. The association of the K121Q polymorphism of the plasma cell glycoprotein-1 gene with type 2 diabetes and hypertension depends on size at birth. J Clin Endocrinol Metab 2004; 89:2044–2047.

    Article  PubMed  CAS  Google Scholar 

  26. Dennison EM, Arden NK, Keen RW et al. Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr Perinat Epidemiol 2001; 15:211–219.

    Article  PubMed  CAS  Google Scholar 

  27. Turner BM. Chromatin and gene regulation: Molecular mechanisms of epigenetics. Oxford UK, Blackwell Science, 2001.

    Google Scholar 

  28. Young LE. Imprinting of genes and the Barker hypothesis. Twin Res 2001; 4:307–317.

    Article  PubMed  CAS  Google Scholar 

  29. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002; 10:682–688.

    Article  PubMed  CAS  Google Scholar 

  30. Pembrey ME. Time to take epigenetic inheritance seriously. Eur J Hum Genet 2002; 10:669–671.

    Article  PubMed  Google Scholar 

  31. Waterland RA, Jirtle RA. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23:5293–5300.

    Article  PubMed  CAS  Google Scholar 

  32. Weaver IC, Cervoni N, Champagne FA et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004, [Epub ahead of print].

    Google Scholar 

  33. Abu-Amero SN, Ali Z, Bennett P et al. Expression of the insulin-like growth factors and their receptors in term placentas: A comparison between normal and IUGR births. Mol Reprod Dev 1998; 49:229–235.

    Article  PubMed  CAS  Google Scholar 

  34. Young LE, Fernandes K, McEvoy TG et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genet 2001; 27:153–154.

    Article  PubMed  CAS  Google Scholar 

  35. Dwyer T, Morley R, Blizzard L. Twins and fetal origins hypothesis: Within-pair analyses. Lancet 2002; 359:2205–6.

    Article  PubMed  Google Scholar 

  36. Dwyer T, Blizzard L, Morley R et al. Within pair association between birth weight and blood pressure at age 8 in twins from a cohort study. British Medical Journal 1999; 319:1325–1329.

    PubMed  CAS  Google Scholar 

  37. Poulter NR, Chang CL, MacGregor AJ et al. Association between birth weight and adult blood pressure in twins: Historical cohort study. British Medical Journal 1999; 319:1330–1333.

    PubMed  CAS  Google Scholar 

  38. Ijzerman RG, Stehouwer CD, Boomsma DI. Evidence for genetic factors explaining the birth weight-blood pressure relation. Analysis in twins. Hypertension 2000; 36:1008–1012.

    PubMed  CAS  Google Scholar 

  39. Baird J, Osmond C, MacGreggor A et al. Testing the fetal origins hypothesis in twins: The Birmingham study. Diabetalogia 2001; 44:33–39.

    Article  CAS  Google Scholar 

  40. Zhang J, Brenner RA, Klebanoff MA. Differences in birth weight and blood pressure at age 7 years among twins. American Journal of Epidemiology 2001; 153:779–782.

    Article  PubMed  CAS  Google Scholar 

  41. Christensen K, Stovring H, McGue M. Do genetic factors contribute to the association between birth weight and blood pressure? Journal of Epidemiology and Community Health 2001; 55:583–587.

    Article  PubMed  CAS  Google Scholar 

  42. Loos RJ, Fagard R, Beunen G et al. Birth weight and blood pressure in young adults: A prospective twin study. Circulation 2001; 104:1633–1638.

    PubMed  CAS  Google Scholar 

  43. Nowson CA, MacInnis RJ, Hopper JL et al. Association of birth weight and current body size to blood pressure in female twins. Twin Research 2001; 4:378–384.

    Article  PubMed  CAS  Google Scholar 

  44. Johansson-Kark M, Rasmussen F, De Stavola B et al. Fetal growth and systolic blood pressure in young adulthood: The Swedish Young Male Twins Study. Paediatric and Perinatal Epidemiology 2002; 16:200–209.

    Article  PubMed  Google Scholar 

  45. McNeill G, Tuya C, Campbell DM et al. Blood pressure in relation to birth weight in twins and singleton controls matched for gestational age. Am J Epidemiol 2003; 158:150–155.

    Article  PubMed  Google Scholar 

  46. McNeill G, Tuya C, Smith W. The role of genetic and environmental factors in the association between birthweight and blood pressure: Evidence from meta-analysis of twin studies. Int J Epidemiol 2004; 33:995–1001.

    Article  PubMed  CAS  Google Scholar 

  47. Iliadou A, Cnattingius S, Lichtenstein P. Low birthweight and Type 2 diabetes: A study on 11,162 Swedish twins. Int J Epidemiol 2004; 33:948–53.

    Article  PubMed  CAS  Google Scholar 

  48. Phillips DI. Commentary: Twins, low birthweight and type 2 diabetes. Int J Epidemiol 2004; 33:953–4.

    Article  Google Scholar 

  49. Hopper JL, Seeman E. The bone density of female twins discordant for tobacco use. N Engl J Med 1994; 330:387–392.

    Article  PubMed  CAS  Google Scholar 

  50. Mann V, De Stavola BL, Leon DA. Separating within and between effects in family studies: An application to the study of blood pressure in children. Stat Med 2004; 23:2745–56.

    Article  PubMed  Google Scholar 

  51. Wenk RE, Houtz T, Brooks M et al. How frequent is heteropaternal superfecundation? Acta Genet Med Gemellol (Roma) 1992; 41:43–47.

    PubMed  CAS  Google Scholar 

  52. Hubinette A, Cnattingius S, Johansson AL et al. Birth weight and risk of angina pectoris: Analysis in Swedish twins. Eur J Epidemiol 2003; 18:539–544.

    Article  PubMed  CAS  Google Scholar 

  53. Hubinette A, Cnattingius S, Ekbom A et al. Birthweight, early environment, and genetics: A study of twins discordant for acute myocardial infarction. Lancet 2001; 357:1997–2001.

    Article  PubMed  CAS  Google Scholar 

  54. Brown R, Ogden J. Children’s eating attitudes and behaviour: A study of the modelling and control theories of parental influence. Health Educ Res 2004; 19:261–271.

    Article  PubMed  Google Scholar 

  55. Trost SG, Sallis JF, Pate RR et al. Evaluating a model of parental influence on youth physical activity. Am J Prev Med 2003; 25:277–282.

    Article  PubMed  Google Scholar 

  56. Taylor GM, Owen P, Mires GJ. Foetal growth velocities in twin pregnancies. Twin Research 1998; 1:9–14.

    Article  PubMed  CAS  Google Scholar 

  57. Vagero D, Leon D. Ischaemic heart disease and low birth weight: A test of the fetal-origins hypothesis from the Swedish Twin Registry. Lancet 1994; 343:260–263.

    Article  PubMed  CAS  Google Scholar 

  58. Christensen K, Vaupel JW, Holm NV et al. Mortality among twins after age 6: Fetal origins hypothesis versus twin method. British Medical Journal 1995; 310:432–436.

    PubMed  CAS  Google Scholar 

  59. Christensen K, Wienke A, Skytthe A et al. Cardiovascular mortality in twins and the fetal origins hypothesis. Twin Research 2001; 4:344–349.

    Article  PubMed  CAS  Google Scholar 

  60. Poulter NR, Chang CL, MacGregor AJ et al. Association between birth weight and adult blood pressure in twins: Historical cohort study. British Medical Journal 1999; 319:1330–1333.

    PubMed  CAS  Google Scholar 

  61. de Geus EJ, Posthuma D, Ijzerman RG et al. Comparing blood pressure of twins and their singleton siblings: Being a twin does not affect adult blood pressure. Twin Research 2001; 4:385–391.

    Article  PubMed  Google Scholar 

  62. Tuya C, Mutch WJ, Broom I et al. Size at birth, fasting glucose and insulin levels and insulin resistance in adult twins. Twin Research 2003; 6:302–306.

    Article  PubMed  Google Scholar 

  63. Jefferies CA, Hofman PL, Wong W et al. Increased nocturnal blood presure in healthy prepubertal twins. Journal of Hypertension 2003; 21:1319–324.

    Article  PubMed  CAS  Google Scholar 

  64. Jefferies CA, Cutfield WS, Robinson EM et al. Twin children are insulin resistant and have ambulatory BP abnormalities irrespective of birth weight or gestational age. Pediatric Research 2003; 53(suppl):9A.

    Google Scholar 

  65. Wilson RS. Twin growth: Initial deficit, recovery, and trends in concordance from birth to nine years. Ann Hum Biol 1979; 6:205–220.

    Article  PubMed  CAS  Google Scholar 

  66. Wilson RS. Growth and development of human twins. In: Falkner F, Tanner JM, eds. Human Growth: A comprehensive Treatise. 2nd ed. Methodology, Ecological, Genetic, and Nutritional Effects on Growth. New York: Plenum Press, 1986:197–211.

    Google Scholar 

  67. Weksberg R, Shuman C, Caluseriu O et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 2002; 11:1317–1325.

    Article  PubMed  CAS  Google Scholar 

  68. Orstavik RE, Tommerup N, Eiklid K et al. Nonrandom X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome. Am J Med Genet 1995; 56:210–214.

    Article  PubMed  CAS  Google Scholar 

  69. Chien CH, Lee JS, Tsai WY et al. Wiedemann-Beckwith syndrome with congenital central hypothyroidism in one of monozygotic twins. J Formos Med Assoc 1990; 89:132–136.

    PubMed  CAS  Google Scholar 

  70. Phillips DI, Davies MJ, Robinson JS. Fetal growth and the fetal origins hypothesis in twins-problems and perspectives. Twin Research 2001; 4:327–331.

    Article  PubMed  CAS  Google Scholar 

  71. Jefferies CA, Hofman PL, Knoblauch H et al. Insulin resistance in healthy prepubertal twins. J Pediatr 2004; 144:608–613.

    Article  PubMed  CAS  Google Scholar 

  72. Rona RJ, Qureshi S, Chinn S. Factors related to total cholesterol and blood pressure in British 9 year olds. Journal of Epidemiology and Community Health 1996; 50:512–518.

    Article  PubMed  CAS  Google Scholar 

  73. Whincup PH, Bredow M, Payne F et al. Size at birth and blood pressure at 3 years of age. The Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC). American Journal of Epidemiology 1999; 149:730–739.

    PubMed  CAS  Google Scholar 

  74. Whincup PH, Cook DG, Papacosta O. Do maternal and intrauterine factors influence blood pressure in childhood? Archives of Disease in Childhood 1992; 67:1423–1429.

    PubMed  CAS  Google Scholar 

  75. Leon DA, Johansson M, Rasmussen F. Gestational age and growth rate of fetal mass are inversely associated with systolic blood pressure in young adults: An epidemiologic study of 165,136 Swedish men aged 18 years. American Journal of Epidemiology 2000; 152:597–604.

    Article  PubMed  CAS  Google Scholar 

  76. Yiu V, Buka S, Zurakowski D et al. Relationship between birthweight and blood pressure in childhood. American Journal of Kidney Disease 1999; 33:253–260.

    CAS  Google Scholar 

  77. Leon DA, Lithell HO, Vagero D et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: Cohort study of 15,000 Swedish men and women born 1915–29. British Medical Journal 1998; 317:241–245.

    PubMed  CAS  Google Scholar 

  78. Rothman KJ, Greenland S. Modern Epidemiology. Philadelphia: Lippincott-Raven, 1998.

    Google Scholar 

  79. Frankel S, Elwood P, Sweetnam P et al. Birthweight, adult risk factors and incident coronary heart disease: The Caerphilly Study. Public Health 1996; 110:139–143.

    Article  PubMed  CAS  Google Scholar 

  80. Poulsen P, Vaag A, Beck-Nielsen H. The influence of zygosity status on blood pressure and on lipid profiles in male and female twins. Journal of Hypertension 2002; 20:645–649.

    Article  PubMed  CAS  Google Scholar 

  81. Poulsen P, Vaag A, Beck-Nielsen H. Does zygosity influence the metabolic profile of twins? A population based cross sectional study. British Medical Journal 1999; 319:151–154.

    PubMed  CAS  Google Scholar 

  82. Christensen K, Vaupel JW, Holm NV et al. Mortality among twins after age 6: Fetal origins hypothesis versus twin method. British Medical Journal 1995; 310:432–436.

    PubMed  CAS  Google Scholar 

  83. Dempsey PJ, Townsend GC, Richards LC. Increased tooth crown size in females with twin brothers: Evidence for hormonal diffusion between human twins in utero. American Journal of Human Biology 1999; 11:577–586.

    Article  PubMed  Google Scholar 

  84. Elkadi S, Nicholls ME, Clode D. Handedness in opposite and same-sex dizygotic twins: Testing the testosterone hypothesis. Neuroreport 1999; 10:333–336.

    Article  PubMed  CAS  Google Scholar 

  85. Gaist D, Bathum L, Skytthe A et al. Strength and anthropometric measures in identical and fraternal twins: No evidence of masculinization of females with male cotwins. Epidemiology 2000; 11:340–343.

    Article  PubMed  CAS  Google Scholar 

  86. Henderson BA, Berenbaum SA. Sex-typed play in opposite-sex twins. Developmental Psychobiology 1997; 31:115–123.

    Article  PubMed  CAS  Google Scholar 

  87. Loehlin JC, Martin NG. A comparison of adult female twins from opposite-sex and same-sex pairs on variables related to reproduction. Behavior Genetics 1998; 28:21–27.

    Article  PubMed  CAS  Google Scholar 

  88. Loehlin JC, Martin NG. Dimensions of psychological masculinity-femininity in adult twins from opposite-sex and same-sex pairs. Behavior Genetics 2000; 30:19–28.

    Article  PubMed  CAS  Google Scholar 

  89. McFadden D. A masculinizing effect on the auditory systems of human females having male cotwins. Proceedings of the National Academy of Science USA 1993; 90:11900–11904.

    Article  CAS  Google Scholar 

  90. MacFadden D, Lochlin JC, Pasanen EG. Additional findings on heritability and prenatal masculinization of cochlear mechanisms: Click-evoked otoacoustic emissions. Hearing Research 1996; 97:102–119.

    Article  Google Scholar 

  91. Miller EM. Reported myopia in opposite sex twins: A hormonal hypothesis. Optometry and Vision Science 1995; 72:34–36.

    Article  PubMed  CAS  Google Scholar 

  92. Miller EM, Martin N. Analysis of the effect of hormones on opposite-sex twin attitudes. Acta Geneticae Medicae Gemellogiae (Roma) 1995; 44:41–52.

    CAS  Google Scholar 

  93. Resnick SM, Gottesman II, McGue M. Sensation seeking in opposite-sex twins: An effect of prenatal hormones? Behavior Genetics 1993; 23:323–329.

    Article  PubMed  CAS  Google Scholar 

  94. Rose RJ, Kaprio J, Winter T et al. Feminity and fertility is sisters with twin brothers: Prenatal androgenization? Cross-sex socialization? Psychological Science 2002; 13:263–267.

    Article  PubMed  Google Scholar 

  95. Schieve LA, Ferre C, Peterson HB et al. Perinatal outcome among singleton infants conceived through assisted reproductive technology in the United States. Obstet Gynecol 2004; 103:1144–1153.

    PubMed  Google Scholar 

  96. Cox GF, Burger J, Lip V et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002; 71:162–164.

    Article  PubMed  CAS  Google Scholar 

  97. De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies: Risk analysis and epigenetic inheritance. Hum Reprod 2002; 17:2487–2494.

    Article  PubMed  Google Scholar 

  98. Marques CJ, Carvalho F, Sousa M et al. Genomic imprinting in disruptive spermatogenesis. Lancet 2004; 363:1700–1702.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Morley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Morley, R., Dwyer, T., Carlin, J.B. (2006). Studies of Twins. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_3

Download citation

Publish with us

Policies and ethics