Skip to main content

Developmental Origins of Cardiovascular Disease, Type 2 Diabetes and Obesity in Humans

  • Chapter
Early Life Origins of Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

Abstract

Fetal growth restriction and low weight gain in infancy are associated with an increased risk of adult cardiovascular disease, type 2 diabetes and the Metabolic Syndrome. The fetal origins of adult disease hypothesis proposes that these associations reflect permanent changes in metabolism, body composition and tissue structure caused by undernutrition during critical periods of early development. An alternative hypothesis is that both small size at birth and later disease have a common genetic aetiology. These two hypotheses are not mutually exclusive. In addition to low birthweight, fetal ‘overnutrition’ caused by maternal obesity and gestational diabetes leads to an increased risk of later obesity and type 2 diabetes. There is consistent evidence that accelerated BMI gain during childhood, and adult obesity, are additional risk factors for cardiovascular disease and diabetes. These effects are exaggerated in people of low birthweight. Poor fetal and infant growth combined with recent increases in childhood adiposity may underlie the high rates of disease in developing countries undergoing nutritional transition. Sub-optimal maternal nutritional status is a major cause of low birthweight globally but its impact on fetal growth in ‘well-nourished’ western populations has been inadequately studied. In experimental animals hypertension and insulin resistance can be programmed in the offspring by restricting maternal diet in pregnancy but there are currently insufficient data to determine whether maternal nutritional status and diet programme cardiovascular disease risk in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kermack WO, McKendrick AG, McKinlay PL. Death rates in great britain and sweden; some general regularities and their significance. Lancet 1934; i:698–703.

    Article  Google Scholar 

  2. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic disease? Br J Prev Soc Med 1977; 31:91–95.

    PubMed  CAS  Google Scholar 

  3. Wadsworth MEJ, Cripps HA, Midwinter RE et al. Blood pressure in a national birth cohort at the age of 36 related to social and familial factors, smoking and body mass. BMJ 1985; 291:1543–1548.

    Google Scholar 

  4. Barker DJP, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; i:1077–1081.

    Article  Google Scholar 

  5. Barker DJP, Osmond C, Winter PDW et al. Weight in infancy and death from ischaemic heart disease. Lancet 1989; ii:577–580.

    Article  Google Scholar 

  6. Osmond C, Barker DJP, Winter PD et al. Early growth and death from cardiovascular disease in women. BMJ 1993; 307:1519–1524.

    PubMed  CAS  Google Scholar 

  7. Barker DJP, Osmond C, Simmonds SJ et al. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 1993; 306:422–426.

    PubMed  CAS  Google Scholar 

  8. Martyn CN, Barker DJP, Osmond C. Mother’s pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet 1996; 348:1264–1268.

    Article  PubMed  CAS  Google Scholar 

  9. Frankel S, Elwood P, Sweetnam P et al. Birthweight, body mass index and incident coronary heart disease. Lancet 1996; 348:1478–1480.

    Article  PubMed  CAS  Google Scholar 

  10. Rich-Edwards JW, Stampfer MJ, Mansin J et al. Birthweight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 1997; 315:396–400.

    PubMed  CAS  Google Scholar 

  11. Forsen T, Eriksson JG, Tuomilehto J et al. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: Follow up study. BMJ 1997; 315:837–840.

    PubMed  CAS  Google Scholar 

  12. Leon DA, Lithell HO, Vagero D et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: Cohort study of 15,000 Swedish men and women born 1915–29. BMJ 1998; 317:241–245.

    PubMed  CAS  Google Scholar 

  13. Forsen T, Eriksson JG, Tuomilehto J et al. Growth in utero and during childhood among women who develop coronary heart disease: Longitudinal study. BMJ 1999; 319:1403–1407.

    PubMed  CAS  Google Scholar 

  14. Eriksson JG, Forsen T, Tuomilehto J et al. Early growth, adult income and risk of stroke. Stroke 2000; 31:869–874.

    PubMed  CAS  Google Scholar 

  15. Hales CN, Barker DJP, Clark PMS et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303:1019–1022.

    PubMed  CAS  Google Scholar 

  16. Barker DJP, Hales CN, Fall CHD et al. Type 2 (noninsulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): Relation to reduced fetal growth. Diabetologia 1993; 36:62–67.

    Article  PubMed  CAS  Google Scholar 

  17. Valdez R, Athens MA, Thompson GH et al. Birthweight and adult outcomes in a bi-ethnic population in the USA. Diabetologia 1994; 37:624–631.

    PubMed  CAS  Google Scholar 

  18. Lithell HO, McKeigue PM, Berglund L et al. Relation of size at birth to noninsulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 1996; 312:406–410.

    PubMed  CAS  Google Scholar 

  19. Yarborough DE, Barrett-Connor E, Kritz-Silverstein D et al. Birthweight, adult weight, and girth as predictors of the Metabolic Syndrome in postmenopausal women. Diabetes Care 1998; 21:1652–1658.

    Google Scholar 

  20. Jie M, Law C, Zhang K-L et al. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med 2000; 132:253–260.

    Google Scholar 

  21. Levitt NS, Lambert EV, Woods D et al. Impaired glucose tolerance and elevated blood pressure in low birthweight, nonobese, young South African adults: Early programming of cortisol axis. J Clin Endocrinol Metab 2000; 85:4611–4618.

    Article  PubMed  CAS  Google Scholar 

  22. Byberg L, McKeigue PM, Zethelius B et al. Birth weight and the insulin resistance syndrome: Association of low birth weight with truncal obesity and raised plasminogen activator inhibitor-1 but not with abdominal obesity or plasma lipid disturbances. Diabetologia 2000; 43:54–60.

    Article  PubMed  CAS  Google Scholar 

  23. Eriksson JG, Forsen T, Tuomilehto J et al. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 2002; 45:342–348.

    Article  PubMed  CAS  Google Scholar 

  24. Huxley RR, Shiell AW, Law CM. The role of size at birth and post-natal catch-up growth in determining systolic blood pressure: A systematic review of the literature. J Hyperten 2000; 18:815–831.

    Article  CAS  Google Scholar 

  25. Newsome CA, Shiell AW, Fall CHD et al. Is birthweight related to later glucose and insulin metabolism? A systematic review. Diabetic Med 2003; in press.

    Google Scholar 

  26. Curhan GC, Willett WC, Rimm EB et al. Birthweight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 1996; 94:3246–3250.

    PubMed  CAS  Google Scholar 

  27. Owen CG, Whincup PH, Odoki K et al. Birthweight and blood cholesterol level; a study in adolescents and systematic review. Pediatrics 2003; 111:1081–9.

    Article  PubMed  Google Scholar 

  28. Fall CHD, Osmond C, Barker DJP et al. Fetal and infant growth and cardiovascular risk factors in women. BMJ 1995; 310:428–432.

    PubMed  CAS  Google Scholar 

  29. Fall CHD, Barker DJP, Osmond C et al. Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ 1992; 304:801–805.

    PubMed  CAS  Google Scholar 

  30. Frankel S, Elwood P, Sweetnam P et al. Birthweight, adult risk factors and incident coronary heart disease: The Caerphilly study. Public Health 1996; 110:139–143.

    Article  PubMed  CAS  Google Scholar 

  31. Byrne CD, Wareham NJ, Phillips DIW et al. Is an exaggerated postprandial triglyceride response associated with the component features of the insulin resistance syndrome? Diabetic Med 1997; 14:942–950.

    Article  PubMed  CAS  Google Scholar 

  32. Barker DJP, Meade TW, Fall CHD et al. Relation of fetal and infant growth to plasma fibrinogen and factor VII concentrations in adult life. BMJ 1992; 304:148–152.

    PubMed  CAS  Google Scholar 

  33. Barker DJP, Martyn CN, Osmond C et al. Growth in utero and serum cholesterol concentrations in adult life. BMJ 1993; 307:1524–1527.

    Article  PubMed  CAS  Google Scholar 

  34. Martyn CN, Meade TW, Stirling Y et al. Plasma concentrations of fibrinogen and factor VII in adult life and their relation to intra-uterine growth. Br J Haematol 1995; 89:142–146.

    PubMed  CAS  Google Scholar 

  35. Martyn CN, Gale CR, Jesperson S et al. Impaired fetal growth and atherosclerosis of the carotid and peripheral arteries. Lancet 1998; 352:173–178.

    Article  PubMed  CAS  Google Scholar 

  36. Lamont D, Parker L, White M et al. Risk of cardiovascular disease measured by carotid intima-media thickness at age 49–51: Lifecourse study. BMJ 2000; 320:273–278.

    Article  PubMed  CAS  Google Scholar 

  37. Martyn CN, Barker DJP, Jesperson S et al. Growth in utero, adult blood pressure, and arterial compliance. Br Heart J 1995; 73:116–121.

    PubMed  CAS  Google Scholar 

  38. Kumaran K, Fall CHD, Martyn CN et al. Blood pressure, arterial compliance and left ventricular mass; no relation to small size at birth in South Indian adults. Heart 2000; 83:272–7.

    Article  PubMed  CAS  Google Scholar 

  39. Vijayakumar M, Fall CHD, Osmond C et al. Growth in infancy and adult left ventricular mass. Br Heart J 1995; 73:363–7.

    PubMed  CAS  Google Scholar 

  40. Zureik M, Bonithon-Kopp C, Lecomte E et al. Weights at birth and in early infancy, systolic blood pressure, and left ventricular structure in subjects aged 8 to 24 years. Hypertension 1996; 27:339–45.

    PubMed  CAS  Google Scholar 

  41. Leeson CPM, Whincup PH, Cook DG et al. Flow-mediated dilation in 9-to 11-year old children. The influence of intrauterine and childhood factors. Circulation 1997; 96:2233–2238.

    PubMed  CAS  Google Scholar 

  42. Leeson CPM, Kattenhorn M, Morley R et al. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 2001; 103:1264–1268.

    PubMed  CAS  Google Scholar 

  43. Goodfellow J, Bellamy MF, Gorman ST et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res 1998; 40:600–606.

    Article  PubMed  CAS  Google Scholar 

  44. Serne EH, Stehouwer CDA, ter Maaten JC et al. Birth weight relates to blood pressure and microvascular function in normal subjects. J Hypertens 2000; 18:1421–1427.

    Article  PubMed  CAS  Google Scholar 

  45. Sorensen HT, Sabroe S, Rothman KJ et al. Relation between weight and length at birth and body mass index in young adulthood: Cohort study. BMJ 1997; 315:1137.

    PubMed  CAS  Google Scholar 

  46. Phillips DIW. Relation of fetal growth to adult muscle mass and glucose tolerance. Diabetic Med 1995; 12:686–90.

    Article  PubMed  CAS  Google Scholar 

  47. Kahn HS, Narayan KMV, Williamson DF et al. Relation of birthweight to lean and fat thigh tissue in young men. Int J Obesity 2000; 24:667–672.

    Article  CAS  Google Scholar 

  48. Weyer C, Pratley RE, Lindsay RS et al. Relationship between birthweight and body composition, energy metabolism and sympathetic nervous system activity later in life. Obesity Research 2000; 8:559–565.

    PubMed  CAS  Google Scholar 

  49. Gale CR, Martyn CN, Kellingray S et al. Intrauterine programming of adult body composition. J Clin Endocrinol Metab 2001; 86:267–272.

    Article  PubMed  CAS  Google Scholar 

  50. Singhal A, Wells J, Cole TJ et al. Programming of lean body mass: A link between birth weight, obesity and cardiovascular disease? Am J Clin Nutr 2003; 77:726–30.

    PubMed  CAS  Google Scholar 

  51. Aihie Sayer A, Syddall HE, Dennison E et al. Birth weight, weight at 1 year of age, and body composition in older men: Findings from the Hertfordshire Cohort Study. Am J Clin Nutr 2004; in press.

    Google Scholar 

  52. Phillips DIW, Fall CHD, Cooper C et al. Size at birth and plama leptin concentrations in adult life. Int J Obesity 1999; 23:1025–1029.

    Article  CAS  Google Scholar 

  53. Malina RM, Katzmarzyk PT, Beunen G. Birthweight and its relationship to size attained and relative fat distribution at 7–12 years of age. Obesity Research 1996; 4:385–390.

    PubMed  CAS  Google Scholar 

  54. Okosun IS, Liao Y, Rotimi CN et al. Impact of birth weight on ethnic variations in subcutaneous and central adiposity in American children aged 5–11 years. A study from the Third National Health and Nutrition Examination Survey. Int J Obesity 2000; 24:479–484.

    Article  CAS  Google Scholar 

  55. Bavdekar A, Yajnik CS, Fall CHD et al. The insulin resistance syndrome (IRS) in eight-year-old Indian children: Small at birth, big at 8 years or both? Diabetes 2000; 48:2422–2429.

    Google Scholar 

  56. Law CM, Barker DJP, Osmond C et al. Early growth and abdominal fatness in adult life. J Epidemiol Community Health 1992; 46:184–186.

    PubMed  CAS  Google Scholar 

  57. Barker M, Robinson S, Osmond C et al. Birthweight and body fat distribution in adolescent girls. Arch Dis Child 1997; 77:381–383.

    PubMed  CAS  Google Scholar 

  58. Eriksson JG, Forsen T, Tuomilehto HJ et al. Early growth and coronary heart disease in later life: Longitudinal study. BMJ 2001; 322:949–953.

    Article  PubMed  CAS  Google Scholar 

  59. Bhargava SK, Sachdev HPS, Fall CHD et al. Relation of serial changes in childhood body mass index to impaired glucose tolerance in young adulthood. New Eng J Med 2004; 350:865–75.

    Article  PubMed  CAS  Google Scholar 

  60. Law CM, Shiell AW, Newsome CA et al. Fetal, infant, and childhood growth and adult blood pressure: A longitudinal study from birth to 22 years of age. Circulation 2002; 105:1088–1092.

    Article  PubMed  CAS  Google Scholar 

  61. Victora CG, Barros FC, Horta BL et al. Short-term benefits of catch-up growth for small-for-gestational-age infants. Int J Epidemiol 2001; 30:1325–30.

    Article  PubMed  CAS  Google Scholar 

  62. Singhal A, Lucas A. Early origins of cardiovascular disease: Is there a unifying hypothesis? Lancet 2004; 363:1642–5.

    Article  PubMed  Google Scholar 

  63. Eriksson JG, Forsen T, Tuomilehto J et al. Catch-up growth in childhood and death from coronary heart disease: Longitudinal study. Br Med J 1999; 318:427–31.

    CAS  Google Scholar 

  64. Eriksson JG, Forsen T, Tuomilehto HJ et al. Early growth and coronary heart disease in later life: Longitudinal study. BMJ 2001; 322:949–953.

    Article  PubMed  CAS  Google Scholar 

  65. Forsen T, Eriksson J, Tuomilehto J et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133:176–182.

    PubMed  CAS  Google Scholar 

  66. Eriksson JG, Forsen T, Tuomilehto J et al. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia 2003; 46:190–4.

    PubMed  CAS  Google Scholar 

  67. Barker DJP, Forsen T, Uutela A et al. Size at birth and resilience to effects of poor living conditions in adult life: Longitudinal study. Br Med J 2001; 323:1–5.

    Article  Google Scholar 

  68. Forrester TE, Wilks RJ, Bennett FI et al. Fetal growth and cardiovascular risk factors in Jamaican schoolchildren. British Medical Journal 1996; 312:156–60.

    PubMed  CAS  Google Scholar 

  69. Stein C, Fall CHD, Kumaran K et al. Fetal growth and coronary heart disease in South India. Lancet 1996; 348:1269–1273.

    Article  PubMed  CAS  Google Scholar 

  70. Jie M, Law C, Zhang K-L et al. Effects of infant birthweight and maternal body mass index in pregnancy on components of the Insulin Resistance Syndrome in China. Ann Intern Med 2000; 132:253–260.

    Google Scholar 

  71. Miura K, Nakagawa H, Tabata M et al. Birthweight, childhood growth, and cardiovascular risk factors in Japanese aged 20 years. Am J Epidemiol 2001; 153:783–9.

    Article  PubMed  CAS  Google Scholar 

  72. Suzuki T, Minami J, Ohrui M et al. Relationship between birthweight and cardiovascular risk factors in Japanese young adults. Am J Hyperten 2000; 13:907–13.

    Article  CAS  Google Scholar 

  73. Levitt NS, Lambert EV, Woods D et al. Impaired glucose tolerance and elevated blood pressure in low birthweight, nonobese, young South African adults: Early programming of cortisol axis. J Clin Endocrinol Metab 2000; 85:4611–4618.

    Article  PubMed  CAS  Google Scholar 

  74. Fall CHD. Developing countries and affluence in type 2 diabetes: The thrifty phenotype. Ed DJP Barker. Br Med Bulletin 2001; 60:33–50.

    Article  CAS  Google Scholar 

  75. Fall CHD, Stein C, Kumaran K et al. Size at birth, maternal weight, and noninsulin-dependent diabetes (NIDDM) in South Indian adults. Diabetic Med 1998; 15:220–227.

    Article  PubMed  CAS  Google Scholar 

  76. Law CM, Egger P, Dada O et al. Body size at birth and blood pressure among children in developing countries. Int J Epidemiol 2000; 29:52–9.

    Google Scholar 

  77. Yajnik CS, Fall CHD, Coyaji KJ et al. Neonatal anthropometry: The thin-fat Indian baby; the Pune Maternal Nutrition Study. Int J Obesity 2003; 27:173–80.

    Article  CAS  Google Scholar 

  78. Yajnik CS, Lubree HG, Rege SS et al. Adiposity and hyperinsulinaemia in Indians are present at birth. J Clin Endocrinol Metab 2002; 87:5575–5580.

    Article  PubMed  CAS  Google Scholar 

  79. Chowdhury B, Lantz L, Sjostrom L. Computed tomography-determined body composition in relation to cardiovascular risk factors in Indian and matched Swedish males. Metabolism 1996; 45:634–644.

    Article  PubMed  CAS  Google Scholar 

  80. Banerji MA, Fardi N, Atluri R et al. Body composition, visceral fat, leptin and insulin resistance in Asian Indian men. J Clin Endocrinol Metab 1999; 84:137–144.

    Article  PubMed  CAS  Google Scholar 

  81. Chandalia M, Abate N, Garg A et al. Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. J Clin Endocrinol Metab 1999; 84:2329–2335.

    Article  PubMed  CAS  Google Scholar 

  82. Yajnik CS, Yudkin JS. The Y-Y paradox. Lancet 2004; 363:163.

    Article  PubMed  Google Scholar 

  83. Barker DJP. The fetal origins of coronary heart disease. BMJ 1995; 311:171–4.

    PubMed  CAS  Google Scholar 

  84. Lucas A. Programming by early nutrition in man. Ciba Foundation Symposium No. 156. 1991; 156:38–50.

    CAS  Google Scholar 

  85. Waterland RA, Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 1999; 69:179–197.

    PubMed  CAS  Google Scholar 

  86. Phillips DIW. Insulin resistance as a programmed response to fetal undernutrition. Diabetologia 1996; 39:1119–1122.

    PubMed  CAS  Google Scholar 

  87. Hales CN, Barker DJP. Type 2 (noninsulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992; 35:595–601.

    Article  PubMed  CAS  Google Scholar 

  88. Mackenzie HS, Brenner BM. Fewer nephrons at birth: A missing link in the etiology of essential hypertension? Am J Kidney Dis 1995; 26:91–98.

    PubMed  CAS  Google Scholar 

  89. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 1997; 350:953–955.

    Article  PubMed  CAS  Google Scholar 

  90. Phillips DIW, Barker DJP. Fall CHD et al. Elevated plasma cortisol concentrations: A link between low birthweight and the insulin resistance syndrome? J Clin Endocrinol Metab 1998; 83:757–760.

    Article  PubMed  CAS  Google Scholar 

  91. Phillips DIW, Barker DJP. Association between low birthweight and high resting pulse in adult life: Is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabetic Med 1997; 14:673–677.

    Article  PubMed  CAS  Google Scholar 

  92. Barker DJP. Mothers, babies and health in later life. London: Churchill Livingstone, 1998.

    Google Scholar 

  93. Leon DA, Koupilova I, Lithell HO et al. Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. BMJ 1996; 312:410–416.

    Google Scholar 

  94. Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease-the hypothesis revisited. BMJ 1999; 319:245–249.

    PubMed  CAS  Google Scholar 

  95. Metcalfe NB, Monaghan P. Compensation for a bad start: Grow now, pay later? Trends in Ecology and Evolution 2001; 16:254–60.

    Article  PubMed  Google Scholar 

  96. McCance RA. Food, growth and time. Lancet 1962; ii:621–626.

    Article  Google Scholar 

  97. Lever AF, Harrap SB. Essential hypertension: A disorder of growth with origins in childhood? J Hyperten 1992; 10:101–120.

    Article  CAS  Google Scholar 

  98. Fall CHD, Pandit AN, Law CM et al. Size at birth and plasma insulin-like growth factor-1 concentrations in childhood. Arch Dis Child 1995; 73:287–293.

    Article  PubMed  CAS  Google Scholar 

  99. Neel JV. Diabetes mellitus: A “Thrifty” Genotype Rendered Detrimental by “Progress”? Am J Hum Genet 1962; 14:353–361.

    PubMed  CAS  Google Scholar 

  100. Morton NE. The inheritance of human birthweight. Ann Hum Genetics 1955; 20:125–134.

    CAS  Google Scholar 

  101. Klebanoff MA, Mednick BR, Schulsinger C et al. Father’s effect on infant birth weight. Am J Obstet Gynaecol 1998; 178:1022–1026.

    Article  CAS  Google Scholar 

  102. Brooks AA, Johnson MR, Steer PJ et al. Birth weight: Nature or nurture? Early Human Dev 1995; 42:29–35.

    Article  CAS  Google Scholar 

  103. Frayling TM, Hattersley AT. The role of genetic susceptibility in the association of low birthweight with type 2 diabetes. In: DJP Barker, ed. Type 2 Diabetes: The Thrifty Phenotype. Br Med Bulletin, 2001:60:33–50.

    Google Scholar 

  104. Hattersley AT, Tooke JE. The fetal insulin hypothesis: An alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 1999; 353:1789–1792.

    Article  PubMed  CAS  Google Scholar 

  105. Dunger DB, Ong KKL, Huxtable SJ et al. Association of the INS VNTR with size at birth. Nature Genetics 1998; 19:98–100.

    Article  PubMed  CAS  Google Scholar 

  106. Casteels K, Ong K, Phillips P. Mitochondrial 16189 variant, thinness at birth and type 2 diabetes. Lancet 1999; 353:1499–1500.

    Article  PubMed  CAS  Google Scholar 

  107. Vaessen N, Janssen JA, Heutink P et al. Association between genetic variation in the gene for insulin-like growth factor-I and low birthweight. Lancet 2002; 359:1036–1037.

    Article  PubMed  CAS  Google Scholar 

  108. Poulsen P, Vaag AA, Kyvic KO et al. Low birthweight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 1997; 40:439–446.

    Article  PubMed  CAS  Google Scholar 

  109. Baird J, Osmond C, MacGregor A et al. Testing the fetal origins hypothesis in twins: The Birmingham twin study. Diabetologia 2001; 44:33–39.

    Article  PubMed  CAS  Google Scholar 

  110. Phillips DIW, Davies MJ, Robinson JS. Fetal growth and the fetal origins hypothesis in twins; problems and perspectives. Twin Research 2001; 4:327–331.

    Article  PubMed  CAS  Google Scholar 

  111. Davey Smith G, Hart C, Ferrell C et al. Birth weight of offspring and mortality in the renfrew and paisley study: Prospective observational study. BMJ 1997; 315:1189–1193.

    PubMed  CAS  Google Scholar 

  112. Davey Smith G, Harding S, Rasato M. Relation between infant’s birth weight and mother’s mortality: Prospective observational study. BMJ 2000; 320:839–840.

    Article  Google Scholar 

  113. Smith GCS, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet 2001; 357:2002–2006.

    Article  PubMed  CAS  Google Scholar 

  114. Lawlor DA, Davey Smith G, Ebrahim S. Birth weight of offspring and insulin resistance in late adulthood: Cross sectional survey. BMJ 2002; 325:359–362.

    Article  PubMed  Google Scholar 

  115. Lindsay RS, Dabelea D, Roumain J et al. Type 2 diabetes and low birth weight: The role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 2000; 49:445–449.

    PubMed  CAS  Google Scholar 

  116. Hypponen E, Davey Smith G, Power C. Parental diabetes and birth weight of offspring: Intergenerational cohort study. BMJ 2003; 326:19–20.

    Article  PubMed  Google Scholar 

  117. Yajnik CS, Coyaji KJ, Joglekar CV et al. Paternal insulin resistance and fetal growth: Problem for the ‘fetal insulin’ and the ‘fetal origins’ hypotheses. Diabetologia 2001; 44:1197–1201.

    Article  PubMed  CAS  Google Scholar 

  118. Yajnik CS, Joglekar CV, Bavdekar A et al. Parental risk of heavy birth weight child, 8 years after delivery. Ped Res 2001; 50(Suppl):4A, Conference abstract.

    Google Scholar 

  119. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025; prevalence, numerical estimates and projections. Diabetes Care 1998; 12:1414–1431.

    Google Scholar 

  120. Dowse GK, Zimmet PZ, Finch CF et al. Decline in incidence of epidemic glucose intolerance in Nauruans: Implications for the ‘thrifty genotype’. Am J Epidemiol 1991; 133:1093–1104.

    PubMed  CAS  Google Scholar 

  121. Morris JA. Fetal origin of maturity-onset diabetes mellitus: Genetic or environmental cause? Medical Hypotheses 1997; 51:285–288.

    Article  Google Scholar 

  122. Eriksson JG, Lindi V, Uusitupa M et al. The effects of the Pro12A1a polymorphism of the peroxisome proliferator-activated receptor-γ2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes 2002; 51:2321–2324.

    PubMed  CAS  Google Scholar 

  123. Ozanne SE, Dorling MW, Wang CL et al. Impaired PI 3-kinase activation in adipocytes from early growth-restricted rats. Am J Physiol 2001; 280:E534–E539.

    CAS  Google Scholar 

  124. Wolff GL, Kodell RL, Moore SR et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12:949–957.

    PubMed  CAS  Google Scholar 

  125. Joseph KS, Kramer MS. Should we intervene to improve fetal growth? In: Kuh D, Ben-Schlomo Y, eds. A Life Course Approach to Chronic Disease Epidemiology. Oxford: Oxford University Press, 1997.

    Google Scholar 

  126. Boyko EJ. Proportion of type 2 diabetes cases resulting from impaired fetal growth. Diabetes Care 2000; 23:1260–1264.

    PubMed  CAS  Google Scholar 

  127. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: Is there really an inverse association between birthweight and subsequent blood pressure? Lancet 2002; 360:659–665.

    Article  PubMed  Google Scholar 

  128. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol 2001; 30:15–25.

    Article  PubMed  CAS  Google Scholar 

  129. Barker DJP, Eriksson JG, Forsen T et al. Fetal origins of adult disease: Strength of effects and biological basis. Int J Epidemiol 2002; 31:1235–9.

    Article  PubMed  CAS  Google Scholar 

  130. Godfrey KM, Forrester T, Barker DJP et al. Maternal nutritional status in pregnancy and blood pressure in childhood. Br J Obstet Gynaecol 1994; 101:398–403.

    PubMed  CAS  Google Scholar 

  131. Adair LS, Kuzawa BBA, Borja J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 2001; 104:1034–1039.

    PubMed  CAS  Google Scholar 

  132. Laor A, Stevenson DK, Shemer J et al. Size at birth, maternal nutritional status in pregnancy and blood pressure at age 17: Population based analysis. BMJ 1997; 315:449–53.

    PubMed  CAS  Google Scholar 

  133. Susser M, Stein Z. Timing in prenatal nutrition: A reprise of the Dutch Famine Study. Nutr Rev 1994; 52:84–94.

    Article  PubMed  CAS  Google Scholar 

  134. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. NEJM 1976; 7:349–54.

    Google Scholar 

  135. Ravelli ACJ, van der Meulen JHP, Michels RPJ et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998; 351:173–177.

    Article  PubMed  CAS  Google Scholar 

  136. Roseboom TJ, van der Meulen JHP, Osmond C et al. Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am J Clin Nutr 2000; 72:1101–1106.

    PubMed  CAS  Google Scholar 

  137. Roseboom TJ, van der Meulen JHP, Osmond C et al. Adult survival after prenatal exposure to the Dutch famine 1944–45. Paed Perinat Epidemiol 2001; 15:220–5.

    Article  CAS  Google Scholar 

  138. Stanner SA, Bulmer K, Andres C et al. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad Siege study, a cross-sectional study. BMJ 1997; 315:1342–9.

    PubMed  CAS  Google Scholar 

  139. Moore SE, Halsall I, Howarth D et al. Glucose, insulin and lipid metabolism in rural Gambians exposed to early malnutrition. Diabetic Med 2001; 18:646–53.

    Article  PubMed  CAS  Google Scholar 

  140. Campbell DM, Hall MH, Barker DJP et al. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol 1996; 103:273–280.

    PubMed  CAS  Google Scholar 

  141. Shiell AW, Campbell DM, Hall MH et al. Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. Br J Obstet Gynaecol 2000; 107:890–5.

    CAS  Google Scholar 

  142. Shiell AW, Campbell-Brown M, Haselden S et al. High-meat, low-carbohydrate diet in pregnancy: Relation to adult blood pressure in the offspring. Hypertension 2001; 38:1282–1288.

    PubMed  CAS  Google Scholar 

  143. Adair LS, Kuzawa BBA, Borja J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 2001; 104:1034–9.

    PubMed  CAS  Google Scholar 

  144. Huxley RR, Neil AWN. Does maternal nutrition in pregnancy and birthweight influence levels of CHD risk factors in adult life? Br J Nutr 2004; 91:459–68.

    Article  PubMed  CAS  Google Scholar 

  145. Godfrey KM, Robinson S, Barker DJP et al. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 1996; 312:410–414.

    PubMed  CAS  Google Scholar 

  146. Inskip HI, Hammond J, Borland S et al. Determinants of fruit and vegetable consumption in 5,630 women aged 20–34 years from the Southampton Women’s Survey. Ped Res 2001; 50(Suppl):58A, Conference abstract.

    Google Scholar 

  147. Rao S, Yajnik CS, Kanade A et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth; the Pune Maternal Nutrition Study. J Nutr 2001; 131:1217–1224.

    PubMed  CAS  Google Scholar 

  148. Belizan JM, Villar J, Bergel E et al. Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: Follow up of a randomised controlled trial. BMJ 1997; 315:281–5.

    PubMed  CAS  Google Scholar 

  149. Dabelea D, Knowler WC, Pettitt DJ. Effect of diabetes in pregnancy and offspring: Follow-up research in the Pima Indians. J Matern-Fetal Med 2000; 9:83–88.

    Article  PubMed  CAS  Google Scholar 

  150. Dabelea D, Hanson RL, Lindsay RS et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity; a study of discordant sibships. Diabetes 2000; 49:2208–2211.

    PubMed  CAS  Google Scholar 

  151. Wei J-N, Sung F-C, Li C-Y et al. Low birthweight and high birthweight infants are at increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care 2003; 26:343–8.

    PubMed  Google Scholar 

  152. McCance DR, Pettitt DJ, Hanson RL et al. Birth weight and noninsulin dependent diabetes: Thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994; 308:942–945.

    PubMed  CAS  Google Scholar 

  153. Rich-Edwards JW, Colditz GA, Stampfer MJ et al. Birthweight and the risk of type 2 diabetes in adult women. Ann Int Med 1999; 130:278–284.

    PubMed  CAS  Google Scholar 

  154. King H. Epidemiology of glucose intolerance and gestational diabetes in women of childbearing age. Diabetes Care 1998; 21(Suppl 2):B9–B13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Fall, C.H.D. (2006). Developmental Origins of Cardiovascular Disease, Type 2 Diabetes and Obesity in Humans. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_2

Download citation

Publish with us

Policies and ethics