Skip to main content

Programming Effects of Excess Glucocorticoid Exposure in Late Gestation

  • Chapter
Early Life Origins of Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

  • 1183 Accesses

Abstract

Glucocorticoids are powerful hormones that play a crucial role in normal maturation of fetal organs in preparation for life outside the womb. However, exposure of the fetus to elevated levels of glucocorticoids, or exposure at inappropriate times, subtly disturbs normal fetal development. Experimental studies have demonstrated that late gestational exposure to excess glucocorticoids causes programming of a number of organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50:515–525.

    PubMed  CAS  Google Scholar 

  2. Liggins GC. Premature delivery of foetal lambs infused with glucocorticoids. J Endocrinol 1969; 45:515–523.

    PubMed  CAS  Google Scholar 

  3. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol 2001; 185:61–71.

    Article  PubMed  CAS  Google Scholar 

  4. Clark PM. Programming of the hypothalamo-pituitary-adrenal axis and the fetal origins of adult disease hypothesis. Eur J Pediatr 1998; 157(Suppl 1):S7–10.

    PubMed  CAS  Google Scholar 

  5. Langley-Evans SC. Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc Nutr Soc 2001; 60:505–513.

    Article  PubMed  CAS  Google Scholar 

  6. Glickman JA, Challis JR. The changing response pattern of sheep fetal adrenal cells throughout the course of gestation. Endocrinology 1980; 106:1371–1379.

    Article  PubMed  CAS  Google Scholar 

  7. Wintour EM, Brown EH, Denton DA et al. The ontogeny and regulation of corticosteroid secretion by the ovine foetal adrenal. Acta Endocrinologica 1975; 79:301–316.

    PubMed  CAS  Google Scholar 

  8. Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: Are there long-term consequences of the life insurance? Proc Nutr Soc 1998; 57:113–122.

    Article  PubMed  CAS  Google Scholar 

  9. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction 2004; 127:515–526.

    Article  PubMed  CAS  Google Scholar 

  10. Fowden AL, Szemere J, Hughes P et al. The effects of cortisol on the growth rate of the sheep fetus during late gestation. J Endocrinol 1996; 151:97–105.

    Article  PubMed  CAS  Google Scholar 

  11. Newnham JP, Evans SF, Godfrey M et al. Maternal, but not fetal, administration of corticosteroids restricts fetal growth. J Matern Fetal Med 1999; 8:81–87.

    Article  PubMed  CAS  Google Scholar 

  12. Crowley P. Prophylactic corticosteriods for preterm birth. Cochrane Library 2004; 4.

    Google Scholar 

  13. French NP, Hagan R, Evans SF et al. Repeated antenatal corticosteroids: Size at birth and subsequent development. Am J Obstet Gynecol 1999; 180:114–121.

    Article  PubMed  CAS  Google Scholar 

  14. Thorp JA, Jones PG, Knox E et al. Does antenatal corticosteroid therapy affect birth weight and head circumference? Obstet Gynecol 2002; 99:101–108.

    Article  PubMed  CAS  Google Scholar 

  15. Antenatal corticosteroids revisited: Repeat courses — National Institutes of Health Consensus Development Conference Statement, August 17–18, 2000. (Obstet Gynecol 2001; 98:144–150).

    Google Scholar 

  16. Moss TJ, Sloboda DM, Gurrin LC et al. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol 2001; 281:R960–970.

    PubMed  CAS  Google Scholar 

  17. Moss TJ, Doherty DA, Nitsos I et al. Pharmacokinetics of betamethasone after maternal or fetal intramuscular administration. Am J Obstet Gynecol 2003; 189:1751–1757.

    Article  PubMed  CAS  Google Scholar 

  18. Seckl JR. Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 1997; 62:89–94.

    Article  PubMed  CAS  Google Scholar 

  19. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414:782–787.

    Article  PubMed  CAS  Google Scholar 

  20. Hales CN, Barker DJ, Clark PM et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303:1019–1022.

    Article  PubMed  CAS  Google Scholar 

  21. Bertram CE, Hanson MA. Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction 2002; 124:459–467.

    Article  PubMed  CAS  Google Scholar 

  22. Nyirenda MJ, Lindsay RS, Kenyon CJ et al. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 1998; 101:2174–2181.

    Article  PubMed  CAS  Google Scholar 

  23. Cleasby ME, Kelly PAT, Walker BR et al. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology 2003; 144:999–1007.

    Article  PubMed  CAS  Google Scholar 

  24. Blondeau B, Lesage J, Czernichow P et al. Glucocorticoids impair fetal beta-cell development in rats. Am J Physiol Endocrinol Metab 2001; 281:E592–599.

    PubMed  CAS  Google Scholar 

  25. Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 2004:00106–02004.

    Google Scholar 

  26. Cleasby ME, Livingstone DE, Nyirenda MJ et al. Is programming of glucocorticoid receptor expression by prenatal dexamethasone in the rat secondary to metabolic derangement in adulthood? Eur J Endocrinol 2003; 148:129–138.

    Article  PubMed  CAS  Google Scholar 

  27. Uno H, Eisele S, Sakai A et al. Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 1994; 28:336–348.

    Article  PubMed  CAS  Google Scholar 

  28. Levitt NS, Lindsay RS, Holmes MC et al. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 1996; 64:412–418.

    PubMed  CAS  Google Scholar 

  29. Dodic M, Peers A, Moritz K et al. No evidence for HPA reset in adult sheep with high blood pressure due to short prenatal exposure to dexamethasone. Am J Physiol Regul Integr Comp Physiol 2002; 282:R343–350.

    PubMed  CAS  Google Scholar 

  30. Bakker JM, Schmidt ED, Kroes H et al. Effects of short-term dexamethasone treatment during pregnancy on the development of the immune system and the hypothalamo-pituitary adrenal axis in the rat. J Neuroimmunol 1995; 63:183–191.

    Article  PubMed  CAS  Google Scholar 

  31. Banjanin S, Kapoor A, Matthews SG. Prenatal glucocorticoid exposure alters hypothalamic-pituitaryadrenal function and blood pressure in mature male guinea pigs. J Physiol (Lond) 2004; 558:305–318.

    Article  PubMed  CAS  Google Scholar 

  32. Dean F, Matthews SG. Maternal dexamethasone treatment in late gestation alters glucocorticoid and mineralocorticoid receptor mRNA in the fetal guinea pig brain. Brain Research 1999; 846:253–259.

    Article  PubMed  CAS  Google Scholar 

  33. Liu L, Li A, Matthews SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: Sex-specific effects. Am J Physiol Endocrinol Metab 2001; 280:E729–739.

    PubMed  CAS  Google Scholar 

  34. Sloboda DM, Moss TJ, Gurrin LC et al. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J Endocrinol 2002; 172:71–81.

    Article  PubMed  CAS  Google Scholar 

  35. Sloboda DM, Moss TJM, Nitsos I et al. Antenatal glucocorticoid treatment in sheep results in adrenal supression in adulthood. J Soc Gynecol Investig 2003; 10:233A.

    Google Scholar 

  36. Davis EP, Townsend EL, Gunnar MR et al. Effects of prenatal betamethasone exposure on regulation of stress physiology in healthy premature infants. Psychoneuroendocrinology 2004; 29:1028–1036.

    Article  PubMed  CAS  Google Scholar 

  37. McDonald T, Franko K, Brown J et al. Betamethasone in the last week of pregnancy causes fetal growth retardation but not adult hypertension in rats. J Soc Gynecol Investig 2003; 10:469–473.

    Article  PubMed  CAS  Google Scholar 

  38. Ortiz LA, Quan A, Weinberg A et al. Effect of prenatal dexamethasone on rat renal development. Kidney Int 2001; 59:1663–1669.

    Article  PubMed  CAS  Google Scholar 

  39. Moss TJM, Doherty DA, Nitsos I et al. Effects into adulthood of single or repeated antenatal corticosteroids in sheep. Am J Obstet Gynecol 2205; 192:146–152.

    Article  CAS  Google Scholar 

  40. Dodic M, May CN, Wintour EM et al. An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci (Lond) 1998; 94:149–155.

    PubMed  CAS  Google Scholar 

  41. Dodic M, Peers A, Coghlan JP et al. Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin Sci (Lond) 1999; 97:103–109.

    Article  PubMed  CAS  Google Scholar 

  42. Wintour EM, Moritz KM, Johnson K et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol 2003; 549:929–935.

    Article  PubMed  CAS  Google Scholar 

  43. Bertram JF, Young RJ, Spencer K et al. Quantitative analysis of the developing rat kidney: Absolute and relative volumes and growth curves. Anat Rec 2000; 258:128–135.

    PubMed  CAS  Google Scholar 

  44. Moritz KM, Wintour EM. Functional development of the meso-and metanephros. Pediatr Nephrol 1999; 13:171–178.

    Article  PubMed  CAS  Google Scholar 

  45. Dessens AB, Haas HS, Koppe JG. Twenty-year follow-up of antenatal corticosteroid treatment. Pediatrics 2000; 105:E77.

    Article  PubMed  CAS  Google Scholar 

  46. Doyle LW, Ford GW, Davis NM et al. Antenatal corticosteroid therapy and blood pressure at 14 years of age in preterm children. Clin Sci (Lond) 2000; 98:137–142.

    Article  PubMed  CAS  Google Scholar 

  47. Dalziel SR, Liang A, Parag V et al. Blood pressure at 6 years of age after prenatal exposure to betamethasone: Follow-up results of a randomized, controlled trial. Pediatrics 2004; 114:e373–377.

    Article  PubMed  Google Scholar 

  48. Wilckens T, De Rijk R. Glucocorticoids and immune function: Unknown dimensions and new frontiers. Immunology Today 1997; 18:418–424.

    Article  PubMed  CAS  Google Scholar 

  49. Sobrian SK, Vaughn VT, Bloch EF et al. Influence of prenatal maternal stress on the immunocompetence of the offspring. Pharmacol Biochem Behav 1992; 43:537–547.

    Article  PubMed  CAS  Google Scholar 

  50. Kay G, Tarcic N, Poltyrev T et al. Prenatal stress depresses immune function in rats. Physiol Behav 1998; 63:397–402.

    Article  PubMed  CAS  Google Scholar 

  51. Tuchscherer M, Kanitz E, Otten W et al. Effects of prenatal stress on cellular and humoral immune responses in neonatal pigs. Vet Immunol Immunopathol 2002; 86:195–203.

    Article  PubMed  CAS  Google Scholar 

  52. Eishi Y, Hirokawa K, Hatakeyama S. Long-lasting impairment of immune and endocrine systems of offspring induced by injection of dexamethasone into pregnant mice. Clin Immunol Immunopathol 1983; 26:335–349.

    Article  PubMed  CAS  Google Scholar 

  53. Coe CL, Lubach GR. Prenatal influences on neuroimmune set points in infancy. Ann NY Acad Sci 2000; 917:468–477.

    Article  PubMed  CAS  Google Scholar 

  54. Chabra S, Cottrill C, Rayens MK et al. Lymphocyte subsets in cord blood of preterm infants: Effect of antenatal steroids. Biol Neonate 1998; 74:200–207.

    Article  PubMed  CAS  Google Scholar 

  55. Kavelaars A, van der Pompe G, Bakker JM et al. Altered immune function in human newborns after prenatal administration of betamethasone: Enhanced natural killer cell activity and decreased T cell proliferation in cord blood. Pediatr Res 1999; 45:306–312.

    PubMed  CAS  Google Scholar 

  56. Smolders-de Haas H, Neuvel J, Schmand B et al. Physical development and medica history of children who were treated antenatally with corticosteroid to prevent respiratory distress syndrome: A 10-to 12-year follow-up. Pediatrics 1990; 86:65–70.

    PubMed  CAS  Google Scholar 

  57. Vermillion ST, Soper DE, Newman RB. Neonatal sepsis and death after multiple courses of antenatal betamethasone therapy. Am J Obstet Gynecol 2000; 183:810–814.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson JWC, Mitzner W, Beck JC et al. Long-term effects of betamethasone on fetal development. Am J Obstet Gynecol 1981; 141:1053–1064.

    PubMed  CAS  Google Scholar 

  59. Huang WL, Beazley LD, Quinlivan JA et al. Effect of corticosteroids on brain growth in fetal sheep. Obstet Gynecol 1999; 94:213–218.

    Article  PubMed  CAS  Google Scholar 

  60. Scheepens A, Van De Waarenburg M, Van Den Hove D et al. A single course of prenatal betamethasone in the rat alters postnatal brain cell proliferation but not apoptosis. J Physiol 2003; 552:163–175.

    Article  PubMed  CAS  Google Scholar 

  61. Dunlop SA, Archer MA, Quinlivan JA et al. Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J Matern Fetal Med 1997; 6:309–313.

    Article  PubMed  CAS  Google Scholar 

  62. Huang WL, Harper CG, Evans SF et al. Repeated prenatal corticosteroid administration delays myelination of the corpus callosum in fetal sheep. Int J Dev Neurosci 2001; 19:415–425.

    Article  PubMed  CAS  Google Scholar 

  63. Quinlivan JA, Dunlop SA, Newnham JP et al. Repeated, but not single, maternal administration of corticosteriods delays myelination in the brain of fetal sheep. Prenat Neonat Med 1999; 4:47–55.

    CAS  Google Scholar 

  64. Antonow-Schlorke I, Schwab M, Li C et al. Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J Physiol 2003; 547:117–123.

    Article  PubMed  CAS  Google Scholar 

  65. Uno H, Lohmiller L, Thieme C et al. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I Hippocampus Brain Res Dev Brain Res 1990; 53:157–167.

    CAS  Google Scholar 

  66. Matthews SG. Antenatal glucocorticoids and the developing brain: Mechanisms of action. Semin Neonatol 2001; 6:309–317.

    Article  PubMed  CAS  Google Scholar 

  67. Modi N, Lewis H, Al-Naqeeb N et al. The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr Res 2001; 50:581–585.

    PubMed  CAS  Google Scholar 

  68. Rayburn W, Christensen H, Gonzalez C. A placebo-controlled comparison between betamethasone and dexamethasone for fetal maturation: Differences in neurobehavioral development in mice offspring. Am J Obstet Gynecol 1997; 176:842–851.

    Article  PubMed  CAS  Google Scholar 

  69. Doyle L, Ford G, Rickards A et al. Antenatal corticosteroids and outcome at 14 years of age in children with birth weight less than 1501 grams. Pediatrics 2000; 106:e2.

    Article  PubMed  CAS  Google Scholar 

  70. Dessens A, Smolders-de Has H, Koppe J. Twenty year follow-up of antenatal corticosteroid treatment. Pediatrics 2000; 105:e77.

    Article  PubMed  CAS  Google Scholar 

  71. Matthews SG. Antenatal glucocorticoids and programming of the developing CNS. Pediatr Res 2000; 47:291–300.

    PubMed  CAS  Google Scholar 

  72. Esplin M, Fausett M, Smith S et al. Multiple courses of antenatal steroids are asociated with a delay in long-term psychomotor development in children with birth weights < 1500 grams. Am J Obstet Gynecol 2000; 182:S24.

    Google Scholar 

  73. French N, Hagan R, Evans S et al. Repeated antenatal corticosteroids:Effects on cerebral palsy and childhood behaviour. Am J Obstet Gynecol 2004; 190:588–595.

    Article  PubMed  CAS  Google Scholar 

  74. Stathis S, O’Callaghan M, Harvey J et al. Head circumference in ELBW babies is associated with learning difficulties and cognition but not ADHD in the school-aged child. Dev Med Child Neurol 1999; 41:375–380.

    Article  PubMed  CAS  Google Scholar 

  75. Brandt I, Sticker E, Lentze M. Catch-up growth of head circumference of very low birthweight, samll for gestational age preterm infants and mental development to adulthood. J Pediatr 2003; 142:463–468.

    Article  PubMed  Google Scholar 

  76. MacNeil T, Cantor-Graae E, Ismail B. Obstetric complications and congential malformation in schizophrenia. Brain Res Rev 2000; 31:166–178.

    Article  Google Scholar 

  77. Harrison P. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122:593–624.

    Article  PubMed  Google Scholar 

  78. Cotter D, Pariante C. Stress and the progression of the developmental hypothesis of schizophrenia. Br J Psychiarty 2002; 181:363–365.

    Article  Google Scholar 

  79. Effect of corticosteroids for fetal maturation on perinatal outcomes. Am J Obstet Gynecol 1995; 173:246–252.

    Google Scholar 

  80. Goldenberg RL, Wright LL. Repeated courses of antenatal corticosteroids. Obstet Gynecol 2001; 97:316–317.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. M. Moss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Moss, T.J.M., Sloboda, D.M. (2006). Programming Effects of Excess Glucocorticoid Exposure in Late Gestation. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_14

Download citation

Publish with us

Policies and ethics