Skip to main content

Kidney Development and Fetal Programming

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

Abstract

Alteration in the normal development of the kidney is likely to be a major contributing factor to programming of adult disease. Renal disease is reaching epidemic proportions in some sectors of the community and is often found in association with the two most characterised adult onset diseases, hypertension and noninsulin dependent diabetes mellitus. Epidemiological studies in humans have identified various maternal states such as anemia, diabetes and protein/micronutrient deficiency as causing renal abnormalities, often in association with decreased birth weight. Animal models of maternal protein/nutrient deficiency as well as maternal glucocorticoid exposure generally results in a reduction in glomerular (and thus nephron) number in the offspring along with increases in blood pressure. It is important to note that the stimulus has the greatest effect when applied at the beginning of metanephric development. The decrease in nephron endowment probably results from changes in expression of genes identified to be critical for normal branching morphogenesis in the kidney. However, other compensatory changes in the kidney may involve alteration of the renal renin-angiotensin system and changes in channels involved in sodium transport. Further research into genes/proteins altered in various “programmed” models, along with use of careful stereological methodology for determining glomerular number are essential to further our understanding of renal involvement in the programming of adult disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moritz KM, Dodic M, Wintour EM. Kidney development and the fetal programming of adult disease. Bioessays 25; 1–9:2003.

    Article  Google Scholar 

  2. Kett MM, Bertram JF. Nephron endowment and blood pressure: What do we really know? Curr Hypertens Rep 2004; 6:133–9.

    PubMed  Google Scholar 

  3. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch up growth in determining systolic blood pressure: A systematic review of the literature. J Hypertens 2000; 18:815–831.

    Article  PubMed  CAS  Google Scholar 

  4. Godfrey KM. The role of the placenta in fetal programming-a review. Placenta 2002; 23:S20–S27.

    Article  PubMed  Google Scholar 

  5. Alebiosu CO. An update on “progression promoters” in renal disease. J Natl Med Assoc 2003; 95:30–42.

    PubMed  CAS  Google Scholar 

  6. Lackland DT, Bendall HE, Osmond C et al. Low birth weights contribute to high rates of early onset chronic renal failure in the Southeastern United States. Arch Intern Med 2000; 160:1472–1476.

    Article  PubMed  CAS  Google Scholar 

  7. Hoy WE, Rees M, Kile E et al. A new dimension to the Barker hypothesis: Low birth weight and susceptibility to renal disease. Kidney Inter 1999; 56:1072–1077.

    Article  CAS  Google Scholar 

  8. Vasarhelyi B, Dobos M, Reusz GS et al. Normal kidney finction and elevated natriuresis in young men born with low birth weight. Pediatr Nephrol 2000; 15:96–100.

    Article  PubMed  CAS  Google Scholar 

  9. Kistner A, Celsi G, Vanpee M et al. Increased blood pressure but normal renal function in adult women born preterm. Pediatr Nephrol 2000; 15:215–220.

    Article  PubMed  CAS  Google Scholar 

  10. Jacobsen P, Rossing P, Tarnow T et al. Birth weight-a risk factor for progression of diabetic nephropathy? J Intern Med 2003; 253:343–350.

    Article  PubMed  CAS  Google Scholar 

  11. Brenner BM, Garcoa DL, Anderson S. Glomeruli and blood pressure: Less of one, more of the other. Am J Hypertens 1988; 1:335–347.

    PubMed  CAS  Google Scholar 

  12. Hoy WE, Douglas-Denton RN, Hughson MD et al. A stereological study of glomerular number and volume: Preliminary findings in a multiracial study of kidneys at autopsy. Kidney Inter Suppl 2003; 83:S31–7.

    Article  Google Scholar 

  13. Langley Evans SC, Welham SJ, Jackson AA. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 1999; 64:965–974.

    Article  PubMed  CAS  Google Scholar 

  14. Woods LL, Ingelfinger JR, Nyengaard JR et al. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 2001; 49:460–467.

    PubMed  CAS  Google Scholar 

  15. Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Inter 2004; 65:1339–1348.

    Article  Google Scholar 

  16. Wintour EM, Moritz KM, Johnson K et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol 2003; 3(549):929–935.

    Article  CAS  Google Scholar 

  17. Dodic M, May CN, Wintour EM et al. An early prenatal exposure to glucocorticoids leads to hypertensive offspring in sheep. Clin Sci 1998; 94:149–155.

    PubMed  CAS  Google Scholar 

  18. Moritz KM, Wintour EM. Functional development of the meso-and metanephros. Pediatr Nephrol 1999; 13:171–178.

    Article  PubMed  CAS  Google Scholar 

  19. Celsi G, Kistner A, Aizman R et al. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res 1998; 44:317–22.

    PubMed  CAS  Google Scholar 

  20. Ortiz LZ, Quan A, Weinberg A et al. Effect of prenatal dexamethasone on rat renal development. Kidney Inter 2001; 59:1663–1669.

    Article  CAS  Google Scholar 

  21. Ortiz LA, Quan A, Zarzar F et al. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension 2003; 41:328–34.

    Article  PubMed  CAS  Google Scholar 

  22. Morley R, Dwyer T. Fetal origins of adult disease? Clin Exp Pharmacol Physiol 2000; 28:962–966.

    Article  Google Scholar 

  23. Bertram J. Counting in the kidney. Kidney Inter 2001; 59:792–796.

    Article  CAS  Google Scholar 

  24. Merlet-Benichou C, Gilbert T, Moreau E et al. Nephron number: Variability is the rule. Lab Invest 1999; 79:515–527.

    PubMed  CAS  Google Scholar 

  25. NarkumBurgess DM, Nolan CR, Norman JE et al. Forty five year follow-up after uninephrectomy. Kidney Inter 1993; 43:1110–1115.

    Google Scholar 

  26. Zimanyi MA, Bertram JF, Black MJ. Nephron number and blood pressure in rat offspring with maternal high-protein diet. Pediatr Nephrol 2002; 17:1000–4.

    Article  PubMed  Google Scholar 

  27. Moritz KM, Wintour EM, Dodic M. Fetal uninephrectomy leads to postnatal hypertension and compromised renal function. Hypertens 2002; 39:1071–1076.

    Article  CAS  Google Scholar 

  28. Woods LL. Neonatal uninephrectomy causes hypertension in adult rats. Am J Physiol 1999; 276:R974–R978.

    PubMed  CAS  Google Scholar 

  29. Douglas-Denton R, Moritz KM, Bertram JF et al. Compensatory renal growth after unilateral nephrectomy of the ovine fetus. J Am Soc Nephrol 2002; 13:406–410.

    PubMed  Google Scholar 

  30. Ritvos O, Tuuri T, Eramaa M et al. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 1995; 50:229–245.

    Article  PubMed  CAS  Google Scholar 

  31. Jhaveri S, Erzurumlu RS, Chiaia N et al. Defective whisker follicles and altered brainstem patterns in activin and follistatin knockout mice. Mol Cell Neurosci 1998; 12(4–5):206–219.

    Article  PubMed  CAS  Google Scholar 

  32. Kojima I, Maeshima A, Zhang YQ. Role of the activin-follistatin system in the morphogenesis and regeneration of the renal tubules. Mol Cell Endocrinol 2001; 180(1–2):179–182.

    Article  PubMed  CAS  Google Scholar 

  33. Brock IIIrd JW, Hunley TE, Adams MC et al. Role of the renin-angiotensin system in disorders of the urinary tract. J Urol 1998; 160:1812–1819.

    Article  PubMed  CAS  Google Scholar 

  34. Nishimura H, Yerkes E, Hohenfellner K et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, cakut, of mice and men. Mol Cell 1999; 3(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996; 122(10):2977–2986.

    PubMed  CAS  Google Scholar 

  36. Martinez G, Mishina Y, Bertram JF. BMPs and BMP receptors in mouse metanephric development: In vivo and in vitro studies. Int J Dev Biol 2002; 46(4):525–533.

    PubMed  CAS  Google Scholar 

  37. Winnier G, Blessing M, Labosky PA et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9(17):2105–2116.

    PubMed  CAS  Google Scholar 

  38. Dunn RN, Winner G, Hargett LK et al. Haploinsufficient phenotypes in BMP-4 heterozygous null mice and modification by mutations in gli3 and alx4. Dev Biol 1997; 188:235–247.

    Article  PubMed  CAS  Google Scholar 

  39. Miyazaki Y, Oshima K, Fogo A et al. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000; 105(7):863–873.

    Article  PubMed  CAS  Google Scholar 

  40. Raatikainen-Ahokas A, Hytonen M, Tenhunen A et al. BMP-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn 2000; 217(2):146–158.

    Article  PubMed  CAS  Google Scholar 

  41. Jena N, Martin-Seisdedos C, McCue P et al. BMP7 null mutation in mice: Developmental defects in skeleton kidney and eye. Exp Cell Res 1997; 230:28–37.

    Article  PubMed  CAS  Google Scholar 

  42. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995; 9:2795–2807.

    PubMed  CAS  Google Scholar 

  43. Piscione TD, Yager TD, Gupta IR et al. BMP-2 and Op-1 exert direct and opposite effects on renal branching morphogenesis. Am J Physiol Renal Physiol 1997; 42:F961–F975.

    Google Scholar 

  44. Schuchardt A, D’agati V, Pachnis V et al. Renal agenesis and hypoplasia in Ret-k- mutant mice result from defects in ureteric bud development. Development 1996; 122:1919–1929.

    PubMed  CAS  Google Scholar 

  45. Miyamoto N, Yoshida M, Kuratani S et al. Defects of urogenital development in mice lacking Emx2. Development 1997; 124:1653–1664.

    PubMed  CAS  Google Scholar 

  46. Xu PX, Adams J, Peters H et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordial. Nat Gen 1999; 23:113–117.

    Article  CAS  Google Scholar 

  47. Qiao J, Uzzo R, Obara-Ishihara T et al. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 1999; 126(3):547–554.

    PubMed  CAS  Google Scholar 

  48. Hatini V, Huh SO, Herzlinger D et al. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2. Genes Dev 1996; 10:1467–1478.

    PubMed  CAS  Google Scholar 

  49. Pichel JG, Shen L, Sheng HZ et al. GDNF is required for kidney development and enteric innervation. Cold Spring Harb Symp Quant Biol 1996; 61:445–457.

    PubMed  CAS  Google Scholar 

  50. Cullen-McEwen LA, Kett MM, Dowling J et al. Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertens 2003; 41(2):335–40.

    Article  CAS  Google Scholar 

  51. Cullen-McEwen LA, Drago J, Bertram JF. Nephron endowment in glial cell line-derived neurotrophic factor (GDNF) heterozygous mice. Kidney Inter 2001; 60(1):31–36.

    Article  CAS  Google Scholar 

  52. Cacalano G, Farinas I, Wang L et al. GFRα-1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 1998; 21:53–62.

    Article  PubMed  CAS  Google Scholar 

  53. Montesano R, Matsumoto K, Nakamura T et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67(5):901–908.

    Article  PubMed  CAS  Google Scholar 

  54. Santos O, Barros EJ, Yang XM et al. Involvement of hepatocyte growth factor in kidney development. Dev Biol 1994; 163(2):525–529.

    Article  PubMed  CAS  Google Scholar 

  55. Santos OFP, Nigam SK. HGF-induced tubulogenesis and branching of epithelial cells is modulated by extracellular matrix and TGF-β. Dev Biol 1993; 160:293–302.

    Article  PubMed  CAS  Google Scholar 

  56. Woolf AS, Kolatsi-Joannou M, Hardman P et al. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J Cell Biol 1995; 128:171–184.

    Article  PubMed  CAS  Google Scholar 

  57. Van Adelsberg J, Sehgal S, Kukes A et al. Activation of hepatocyte growth factor (HGF) by endogenous HGF activator is required for metanephric kidney morphogenesis in vitro. J Biol Chem 2001; 276:15099–15106.

    Article  PubMed  Google Scholar 

  58. Davis AP, Witte DP, Hscih-LI HM et al. Absence of radius and ulna in mice lacking Hox-a11 and Hox-d11. Nature 1995; 375:791–195.

    Article  PubMed  CAS  Google Scholar 

  59. Patterson LT, Pembaur M, Potter S. Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. Development 2001; 128:2153–2161.

    PubMed  CAS  Google Scholar 

  60. Platt JL, Trescony P, Lindman B et al. Heparin and heparin sulfate delimit nephron formation in fetal metanephric kidneys. Dev Biol 1990; 139:338–348.

    Article  PubMed  CAS  Google Scholar 

  61. Davies JML, Gallagher J, Garrod D. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development 1995; 12:1507–1517.

    Google Scholar 

  62. Bard JB, Ross AS. Lif, the ES-cell inhibition factor, reversibly blocks nephrogenesis in cultured mouse kidney rudiments. Development 1991; 113(1):193–198.

    PubMed  CAS  Google Scholar 

  63. Barasch J, Yang J, Ware CB et al. Mesenchymal to epithelial conversion in rat metanephros is induced by Lif. Cell 1999; 99(4):377–386.

    Article  PubMed  CAS  Google Scholar 

  64. Torres M, Gomez-Pardo E, Dressler GR et al. Pax-2 controls multiple steps of urogenital development. Development 1995; 121(12):4057–4065.

    PubMed  CAS  Google Scholar 

  65. Porteous S, Torban E, Cho NP et al. Primary renal hypoplasia in humans and mice with pax2 mutations: Evidence of increased apoptosis in fetal kidneys of Pax-2(1neu) +/− mutant mice. Hum Mol Genet 2000; 9(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  66. Quaggin SE, Schwartz L, Cui S et al. The basic-helix-loop-helix protein Pod1 is critically important for kidney and lung organogenesis. Development 1999; 126(24):5771–83.

    PubMed  CAS  Google Scholar 

  67. Vilar J, Gilbert T, Moreau E et al. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Inter 1996; 49(5):1478–1487.

    CAS  Google Scholar 

  68. Moreau E, Vilar J, LelievrePegorier M et al. Regulation of c-ret expression by retinoic acid in rat metanephros: Implication in nephron mass control. Am J Physiol Renal Physiol 1998; 275:F938–F945.

    CAS  Google Scholar 

  69. Mendelsohn C, Batourina E, Fung S et al. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 1999; 126:1139–1148.

    PubMed  CAS  Google Scholar 

  70. Rogers S, Ryan G, Hammerman MR. Metanephric transforming growth factor-alpha is required for renal organogenesis in vitro. Am J Physiol Renal Physiol 1992; 262:F533–F539.

    CAS  Google Scholar 

  71. Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992; 359:693–699.

    Article  PubMed  CAS  Google Scholar 

  72. Rogers SA, Ryan G, Purchio AF et al. Metanephric transforming growth factor-β1 regulates nephrogenesis in vitro. Am J Physiol Renal Physiol 1993; 264:F996–1002.

    CAS  Google Scholar 

  73. Sakurai H, Nigam SK. Transforming growth factor-β selectively inhibits branching mophogenesis but not tubulogenesis. Am J Physiol Renal Physiol 1997; 272:F139–F146.

    CAS  Google Scholar 

  74. Clark AT, Young RJ, Bertram JF. In vitro studies on the roles of transforming growth factor-beta 1 in rat metanephric development. Kidney Inter 2001; 59(5):1641–1653.

    Article  CAS  Google Scholar 

  75. Majumdar A, Vainio S, Kispert A et al. Wnt11 and RET/GDNF pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 2003; 130(14):3175–3185.

    Article  PubMed  CAS  Google Scholar 

  76. Stark K, Vainio S, Vassileva G et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994; 372:679–683.

    Article  PubMed  CAS  Google Scholar 

  77. Kispert A, Vainio S, Mcmahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 1998; 125(21):4225–4234.

    PubMed  CAS  Google Scholar 

  78. Kreidberg JA, Sariola H, Loring JM et al. Wt-1 is required for early kidney development. Cell 1993; 74(4):679–691.

    Article  PubMed  CAS  Google Scholar 

  79. Al-Awqati Q, Goldberg M. Architectural patterns in branching morphogenesis in the kidney. Kidney Int 1998; 54(6):1832–1842.

    Article  PubMed  CAS  Google Scholar 

  80. Shah MM, Sampogna RV, Sakurai H et al. Branching morphogenesis and kidney disease. Development 2004; 131(7):1449–1462.

    Article  PubMed  CAS  Google Scholar 

  81. Welham SJ, Woolf AS. Organ culture of intact metanephric kidneys. Methods Mol Med 2003; 86:169–177.

    PubMed  Google Scholar 

  82. Qiao J, Sakurai H, Nigam SK. Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc Natl Acad Sci USA 1999; 96:7330–7335.

    Article  PubMed  CAS  Google Scholar 

  83. Montesano R, Matsumoto K, Nakamura T et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67(5):901–908.

    Article  PubMed  CAS  Google Scholar 

  84. Santos OFP, Moura LA, Rosen EM et al. Modulation of HGF-induced tubulogenesis and branching by multiple phosphorylation mechanisms. Dev Biol 1993; 159:535–548.

    Article  PubMed  CAS  Google Scholar 

  85. Crowe C, Dandekar P, Fox M et al. The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol 1995; 488:515–519.

    PubMed  CAS  Google Scholar 

  86. Lisle SJ, Lewis RM, Petry CJ et al. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 2003; 90(1):33–39.

    Article  PubMed  CAS  Google Scholar 

  87. Van de Broek N. Anaemia and micronutrient deficiencies. Br Med Bull 2003; 67:149–160.

    Article  PubMed  CAS  Google Scholar 

  88. Chugh SS, Wallner EI, Kanwar YS. Renal development in high glucose ambience and diabetic embryopathy. Seminars Nephrol 2003; 23:583–592.

    Article  Google Scholar 

  89. Rodriguez MM, Gomez AH, Abitbol CL et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 2004: (in press).

    Google Scholar 

  90. Moritz KM, Johnson K, Douglas-Denton R et al. Maternal glucocorticoid treatment programs alterations in the renin-angiotensin system of the ovine fetal kidney. Endocrinol 2002;143:4455–63.

    Article  CAS  Google Scholar 

  91. Edwards LJ, McMillan IC. Periconceptual nutrition programs development of the cardiovascular system in sheep. Am J Physiol Regul Integr Comp 2002; 283:R669–R679.

    CAS  Google Scholar 

  92. Whorwood CB, Firth KM, Budge H et al. Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin II receptor in neonatal sheep. Endocrinol 2001; 142:2854–2864.

    Article  CAS  Google Scholar 

  93. Konje JC, Bell SC, Morton JJ et al. Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin Sci (Lond) 1996; 91(2):169–175.

    PubMed  CAS  Google Scholar 

  94. Sahajpal V, Ashton N. Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 2003; 104(6):607–614.

    Article  PubMed  CAS  Google Scholar 

  95. McMullen S, Gardiner DS, Langley-Evans SC. Prenatal programming of angiotensin II type 2 receptor expression in the rat. Br J Nutr 2004; 91(1):133–140.

    Article  PubMed  CAS  Google Scholar 

  96. Vehaskari VM, Stewart T, Lafont D et al. Kidney angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol 2004: (in press).

    Google Scholar 

  97. Sherman RC, Langley-Evans SC. Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat. Clin Sci (Lond) 1998; 94(4):373–381.

    PubMed  CAS  Google Scholar 

  98. Siragy HM. AT1 and AT2 receptor in the kidney: Role in health and disease. Seminars Nephrol 2004; 24:93–100.

    Article  CAS  Google Scholar 

  99. Bertram C, Trowern AR, Copin N et al. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehyrogenase: Potential mechanisms underlying the programming of hypertension in utero. Endocrinology 2001; 142:2841–2853.

    Article  PubMed  CAS  Google Scholar 

  100. Knepper MA, Kim GH, Masilamani S. Renal tubule sodium transporter abundance profiling in rat kidney: Response to aldosterone and variations in NaCl intake. Ann NY Acad Sci 2003; 986:562–569.

    Article  PubMed  CAS  Google Scholar 

  101. Beutler KT, Masilamani S, Turban S et al. Long-term regulation of ENaC expression in kidney by angiotensin II. Hypertens 2003; 41:1143–1150.

    Article  CAS  Google Scholar 

  102. Manning J, Beutler K, Knepper MA et al. Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol Renal Physiol 2002; 283:F202–F206.

    PubMed  CAS  Google Scholar 

  103. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic disease. Nutrition 2004; 20:63–68.

    Article  PubMed  CAS  Google Scholar 

  104. Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 2004: (in press).

    Google Scholar 

  105. Hughson M, Farris IIIrd AB, Douglas-Denton R et al. Glomerular number and size in autopsy kidneys: The relationship to birth weight. Kidney Inter 2003; 63:2113–22.

    Article  Google Scholar 

  106. Hogg RJ, Furth S, Lemley KV et al. National Kidney Foundation’s disease outcome quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: Evaluation, classification and stratification. Pediatr 2003; 111:1416–1421.

    Article  Google Scholar 

  107. Schwartz GJ, Haycock GB, Edelman CM et al. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58:259–263.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Moritz, K.M., Cullen-McEwen, L.A. (2006). Kidney Development and Fetal Programming. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_11

Download citation

Publish with us

Policies and ethics