Advertisement

Fundamentals of EEG Methodology in Concussion Research

  • William J. Ray
  • Semyon Slobounov

Abstract

The EEG in humans was first demonstrated by Hans Berger in the 1920s. His initial speculation that EEG could give us insight into physiological and cognitive processes has been validated in a variety of situations ranging from sleep to wakefulness as well as physiological concomitants of a variety of cognitive events. The current chapter will review basic EEG processes and present the background for understanding its usefulness in identification of changes related to motor processes in general and brain trauma, in specific.

Keywords

Brain imaging EEG Frequency domain Evoke Potentials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, H. (1929). Uber das Elektrenkephalogramm des Menschen. Translated and reprinted in Pierre Gloor, Hans Berger on the electroencephalogram of man. Electroencephalography and clinical neurophysiology (Supp. 28) 1969, Amsterdam: Elsevier.Google Scholar
  2. Adrian, E., & Matthews, B. (1934). Berger rhythm: Potential changes from the occipital loves of man. Brain, 57, 355–385.Google Scholar
  3. Li. C., & Jasper, H. (1953). Microelectrode studies of the electrical activity of the cerebral cortex in the cat. Journal of Physiology, 121, 117–140.PubMedGoogle Scholar
  4. Lutzenberger, W., Elbert, T., & Rockstroh, B. (1987). A brief tutorial on the implications of volume conduction for the interpretation of the EEG. Journal of Psychophysiology, 1, 81–89.Google Scholar
  5. Lopes da Silva, F. (1991). Neural mechanisms underlying brain waves: From neural membranes to networks. Electroencephalography and Clinical Neurophysiology, 79, 81–93.PubMedCrossRefGoogle Scholar
  6. Jasper, H.H. (1958). The ten-twenty electrode system of the International Federation. EEG Clinical Neurophysiology, 10, 371–375.Google Scholar
  7. Shaw, J. (2003). The brain’s alpha rhythms and the mind. Amsterdam: Elsevier.Google Scholar
  8. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.PubMedCrossRefGoogle Scholar
  9. Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17, 722–734.PubMedGoogle Scholar
  10. Walter, W.G. (1953). The living brain. New York: W.W. Norton.Google Scholar
  11. Luu, P. & Tucker, D. (2003). Self-regulation and the executive functions: Electrophsiological clues. In A. Zani & A. Proverbio (eds.), The Cognitive Electrophysiology of Mind and Brain. New York: Academic Press.Google Scholar
  12. Schacter, D.L. (1977). EEG theta waves and psychological phenomena: A review and analysis. Biological Psychology, 5, 47–82.PubMedCrossRefGoogle Scholar
  13. Vogel, W., Broverman, D.M., & Klaiber, E.L. (1968). EEG and mental abilities. Electroencephalography and Clinical Neurophysiology, 24, 166–175.PubMedCrossRefGoogle Scholar
  14. Duncan, C., Kosmidis, M., & Mirsky, A. (2005). Closed head injury-related information processing deficits: An event-related potential analysis. International Journal of Psychophysiology, 58, 133–157.PubMedCrossRefGoogle Scholar
  15. Verleger, R. (2003). Event-related EEG potential research in neurological patients. In A. Zani & A. Proverbio (eds.), The Cognitive Electrophysiology of Mind and Brain. New York: Academic Press.Google Scholar
  16. Walter, W., Cooper, V., Aldridge, W. C., McCallum, W., & Winter, A. (1964). Contingent negative variation: an electrical sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380–384.PubMedCrossRefGoogle Scholar
  17. Kutas, M. & Donchin, E. (1980). Preparation to respond as manifested by movement related brain potentials. Brain Research, 202, 95–115.PubMedCrossRefGoogle Scholar
  18. Ray, W., Slobounov, S., Mordkoff, J., Johnston, J., & Simon, R. (2000). Rate of force development and the lateralized readiness potential. Psychophysiology, 37, 757–765.PubMedCrossRefGoogle Scholar
  19. de Jong, R., Weirda, M., Mulder, G., & Mulder, I. (1988). Use of partial stumulus information in response processing. Journal of Experimental psychology: Human perception and performance, 14, 682–692.PubMedCrossRefGoogle Scholar
  20. Gratton, G., Coles, M., Sirevaag, E., Eriksen, C. & Donchen, E. (1988). Pre-and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human perception and performance, 14, 331–344.PubMedCrossRefGoogle Scholar
  21. Hackley, S., & Miller, J. (1995). Response complexity and precue interval effects on the lateralized readiness potential. Psychophysiology, 32, 230–241.PubMedGoogle Scholar
  22. Kornhuber, H. H. & Deecke, L. (1965). Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des Menschen. Bereitschaftspotential und reafferente Potential. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 284: 1–17.CrossRefGoogle Scholar
  23. Kutas, M. & Donchin, E. (1974). Studies squeezing: The effects of handedness. The responding hand and response force on the contralateral dominance of readiness potential. Science 186, 545–548PubMedGoogle Scholar
  24. Kristeva, R., Cheyne, D., Lang, W., Lindinger, G. & Deecke, L. (1990). Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. EEG and Clinical Neurophysiology, 74, 10–418.Google Scholar
  25. Cooper, R., McCallum, W. C., & Cornthwaite, S. P. (1989). Slow potential changes related to the velocity of target movement in a tracking task. EEG and Clinical Neurophysiology, 72, 232–239.CrossRefGoogle Scholar
  26. Lang, W., Zilch, O., Koska, C., Lindinger, G., & Deecke, L. (1989). Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Experimental Brain Research, 74, 99–104.CrossRefGoogle Scholar
  27. Pfurtscheller, G, & Lopes da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronizatiom:basic principes. Clinical Neurophysiology, 110, 1842–1857.PubMedCrossRefGoogle Scholar
  28. Bernstein, N. (1967). Coordination and regulation of movements. Oxford: Pergamon Press.Google Scholar
  29. Enoka, R. M. (1983). Muscular control of a learned movement: the speed control system hypothesis. Experimental Brain Research, 51, 135–145.CrossRefGoogle Scholar
  30. Gordon, J., & Ghez, C. (1987). Trajectory control in targeted force impulses. II. Pulse Height Control. Experimental Brain Research, 67, 241–252.CrossRefGoogle Scholar
  31. Bock, O., & Eckmiller, R. (1986). Goal-directed arm movements in absence of visual guidance: Evidence for amplitude rather than position control. Experimental Brain Research, 6, 451–558.Google Scholar
  32. Nougier, V., Bard, C., Fleury, M, Teasdale, N., Cole, J., Forget, R., Paillard, J., & Lamarre, Y. (1996). Control of single-joint movements in deafferented patients: Evidence for amplitude coding rather than position control. Experimental Brain Research, 109, 473–482.CrossRefGoogle Scholar
  33. Ghez, C., Felice-Ghilardi, M., & Gordon, J. (1995). Impairment of reaching movements in patients without proprioception: II. Effect of visual information on accuracy. Journal of Neurophysiology, 73, 361–372.PubMedGoogle Scholar
  34. Jaric, S., Corcos, D. & Latash, M. (1992). Effect of practice on final position reproduction. Experimental Brain Research, 91, 129–134.CrossRefGoogle Scholar
  35. Grünewald, G., & Grünewald-Zuberbier, E. (1983a). Cerebral potentials during voluntary ramp movement in aiming task. In A. W. K. Gaillard, & W. Ritter (Eds.), Tutorial in ERP research: endogenous components. (pp 311–327). Amsterdam: North-Holland.Google Scholar
  36. Grünewald, G., & Grünewald-Zuberbier, E, (1983b). Cerebral potentials during skilled slow positioning movements. Biological Psychology, 31, 71–78.Google Scholar
  37. Wallenstein, G., Nash, A. J., & Kelso, J. A. S. (1995). Frequency and phase characteristics of slow cortical potentials preceding bimanual coordination. EEG and Clinical Neurophysiology, 94, 50–59.CrossRefGoogle Scholar
  38. Slobounov, S., Rearick., M., Simon, R., & Johnson, J. (2000e). Movement-related potentials are task or end-effector dependent: Evidence from a multifinger experiment. Experimental Brain Research, 135, 106–116.CrossRefGoogle Scholar
  39. Steinmetz, H., Fuerst, G., & Meyer, B-U. (1989). Craniocerebral topagraphy within the international 10–20 system. EEG and Clinical Neurophysiology, 72, 499–506.CrossRefGoogle Scholar
  40. Gerloff, C., Jacob, R., Hadley, J., Schulman, A., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.PubMedCrossRefGoogle Scholar
  41. Pfurtscheller, G. (1981). Central beta rhythm during sensory motor activities in man. EEG and Clinical Neurophysiology, 51, 253–264.CrossRefGoogle Scholar
  42. Jasper, H. H., & Penfield, W. (1949). Electroencephalograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Archive of Psychiatry and Neurology, 183, 163–174.CrossRefGoogle Scholar
  43. Rougeul, A., Bouyer, J. J., Dedet, L., & Debray, O. (1979). Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. EEG and Clinical Neurophysiology, 46, 310–319.CrossRefGoogle Scholar
  44. Stancák, A. Jr., & Pfurtscheller, G. (1995). Desynchronization and recovery of beta rhythms during brisk and slow self-paced finger movements in man. Neuroscience Letter, 196, 21–25.CrossRefGoogle Scholar
  45. Basar, E., Basar-Eroglu, C., Demiralp, T., Schürmann, M. (1995). Time and frequency analysis of the brain’s distributed gamma band system. IEEE Engineer. Medical Biology, 14, 400–410.CrossRefGoogle Scholar
  46. De France, J., & Sheer, D. E. (1988). Focused arousal, 40 Hz EEG and motor programming. In D. Giannitrapini & L. Murii (Eds.). The EEG of mental activities, (pp. 153–168). Basel: Karger.Google Scholar
  47. Salenius, S., Salmelin, R., Neuper, C., Pfurtscheller, G., & Hari, R. (1996). Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neuroscience Letter, 213, 75–78.CrossRefGoogle Scholar
  48. Toro, C., Cox, C., Friehs, C., Ojakandas, C., Maxwell, R., Gates, J., Gumnit, R., & Ebner, T. (1994). 8–12 rhythmical oscillations in human motor cortex during two-dimensional arm movements: evidence for representation of kinematic parameters. Clinical Neurophysiology, 93, 390–403.Google Scholar
  49. Slobounov, S., Fukada, K., Simon, R., Rearick, M., & Ray, W. (2000a). Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Cognitive Brain Research, 9, 287–298.PubMedCrossRefGoogle Scholar
  50. Schlaug, G., Sanes, J. N., Thangaraj, V., Darby, D. C., Jancke, L., Edelman, R. R., & Warach, S. (1996). Cerebral activation covaries with movement rate. Neuroreport, 7(4), 879–883.PubMedGoogle Scholar
  51. Wexler, B. E., Fulbright, R. K., Lacadie, C. M., Skudlarski, P, Kelz, M. B., Constable, R. T., & Gore, J. C. (1997). An fMRI study of the human cortical motor system response to increasing functional demands. Magnetic Resonance Imaging, 15(4), 385–396.PubMedCrossRefGoogle Scholar
  52. Turner, R. S., Grafton, S. T., Votaw, J. R., Delong, M. R., & Hoffman, J. M. (1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology, 80(4), 2162–2176.PubMedGoogle Scholar
  53. Jenkins, I. H., Passingham, R. E., & Brooks, D. J. (1997). The effect of movement frequency on cerebral activation: a positron Emission tomography study. Journal of Neurological Sciences, 151(2), 195–205.CrossRefGoogle Scholar
  54. Yue, G., Liu, Z., Siemionov, V., Ranganathan, V., Ng, T., & Sahgal, V. (2000). Brain activation during human finger extension and flexion movements. Brain Research, 21(856), 291–300.CrossRefGoogle Scholar
  55. Kelso, S., Fuchs, A., Lancaster, R., Holroyd, T., Cheyne, D., & Weinberg, H. (1998). Dynamic cortical activity in the human brain reveals motor equivalence. Nature, 392, 814–818.PubMedCrossRefGoogle Scholar
  56. Bressler, S. L., & Kelso, J. A. S. (2001). Cortical coordination dynamics and cognition. Trends in Cognitive Neuroscience, 5, 26–36.CrossRefGoogle Scholar
  57. Schwartz, A., & Moran, D. (1999). Motor cortical activity during drawing movements: population representation during lemniscate tracing. Journal of Neurophysiology, 82(5), 2705–18.PubMedGoogle Scholar
  58. Georgopolous, A, Schwartz, A., Kettner, R. (1986). Neuronal population coding of movement direction. Science, 260, 47–52.Google Scholar
  59. Moran, D., & Schwartz, A. (1999a). Motor cortical activity during drawing movements:population representation during spiral tracing. Journal of Neurophysiology, 82(5), 2693–704.PubMedGoogle Scholar
  60. Moran, D., & Schwartz, A. (1999b). Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology, 82(5), 2676–92.PubMedGoogle Scholar
  61. Georgopoulos, A., Pellizzer, G., Poliakov, A., & Schieber, M. (1999). Neural coding of finger and wrist movements. Journal of Computational Neuroscience, 6(3), 279–88.PubMedCrossRefGoogle Scholar
  62. Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neuroscience, 3(4), 391–8.CrossRefGoogle Scholar
  63. Johnson, M., & Ebner, T. (2000). Processing of multiple kinematic signals in the cerebellum and motor cortices. Brain Research Review, 1, 33(2–3), 155–168.CrossRefGoogle Scholar
  64. Hepp-Reymond, M. C., Kirkpatrick-Tanner, M., Gabernet, L., Qi, H-X., & Weber, B. (1999). Context-dependent force coding in motor and premotor cortical areas. Experimental Brain Research, 128, 123–133.CrossRefGoogle Scholar
  65. Muir, R. B., & Lemon, R. N. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261, 312–316.PubMedCrossRefGoogle Scholar
  66. Wannier, T. M., Maier, M. A, Hepp-Reymond, M. C. (1991). Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip. Journal of Neurophysiology, 65(3), 572–589.PubMedGoogle Scholar
  67. Evarts, E. (1968). Relation of pyramidal tract to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.PubMedGoogle Scholar
  68. Ashe, J. (1997). Force and the motor cortex. Behavioral Brain Research, 86, 1–15.CrossRefGoogle Scholar
  69. Dettmers, C., Fink, G. R., Lemon, R. N., Stephan, K. M., Passigham, R. E., Silversweig, D., Holmes, A., Ridding, M. C., Brooks, D. J., & Frackowiak. R. S. (1995). Relation between cerebral activity and force in the motor areas of the human brain. Journal of Neurophysiology, 74(2), 802–815.PubMedGoogle Scholar
  70. Wilke, J. T. & Lansing, R. W. (1973). Variations in the motor potential with force exerted during voluntary arm movements in man. EEC and Clinical Neurophysiology, 35, 259–265.CrossRefGoogle Scholar
  71. Hazemann, P., Metral, S. & Lille, F. (1978). Influence of physical parameters of movement (force, speed and duration) upon slow cortical potentials in man. In D.A. Otto (Ed.), Multidisciplinary perspectives in event-related brain potential research. (pp. 107–111). US Government Printing Office, Washington DC.Google Scholar
  72. Becker, W., & Kristeva, R. (1980). Cerebral potentials to various force deployments. In H.H. Kornhuber, L. Deecke, (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use. Progress in brain research, (pp. 189–194). vol. 54. Amsterdam: Elsevier.Google Scholar
  73. Slobounov, S., Tutwiler, R., Rearick, M., & Challis, J. (1999). EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques. Clinical Neurophysiology, 110, 1764–1773.PubMedCrossRefGoogle Scholar
  74. Semionow, V., Yue, G. H., Ranganathan, V. K., Liu, J. Z. & Sahgal, V. (2000). Relationship between motor activity-related cortical potential and voluntary muscle activation. Experimental Brain Research, 133, 303–311.CrossRefGoogle Scholar
  75. Sommer, W., Leuthold, H., & Ulrich, R. (1994). The lateralized readiness potential preceding brief isometric force pulses of different peak force and rate of force production. Psychophysiology, 31, 503–512.PubMedGoogle Scholar
  76. Slobounov, S., Ray, W., & Simon, R. (1998b). Movement related potentials accompanying unilateral finger movements with special reference to rate of force development. Psychophysiology, 35, 1–12.CrossRefGoogle Scholar
  77. Slobounov, S. & Ray, W. (1998). Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Experimental Brain Research, 123(4), 461–473.CrossRefGoogle Scholar
  78. Rearick. M., & Slobounov, S. (2000). Negative Cortical DC shifts associated with coordination and control during a prehensile force task. Experimental Brain Research, 132, 195–202.CrossRefGoogle Scholar
  79. Slobounov, S., Rearick., M., & Chiang, H. (2000d). Movement-related potentials as a function of movement amplitude and preloading conditions. Clinical Neurophysiology, 111, 1997–2007.PubMedCrossRefGoogle Scholar
  80. Carlton, L. G., & Newell, K. M. (1988). Force variability and movement accuracy in space-time. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 24–36.CrossRefGoogle Scholar
  81. Pfurtscheller, G., Zalaudek, K., & Neuper, C. (1998). Event-related synchronization after wrist, finger, and thumb movement. Electroencephalography and Clinical Neurophysiology, 109, 154–160.PubMedCrossRefGoogle Scholar
  82. Cheney, P., & Fetz, E. (1980). Functional classes of primate conticomotoneuronal cells and their relation to active force. Journal of Neuroscience, 44, 773–791.Google Scholar
  83. Maier, M. A., Bennett, K., Hepp-Reymond, M., & Lemon, R. (1993). The contribution of the monkey corticomotoneuronal system to the control of force in precision grip. Journal of Neuroscience, 69(3), 772–785.Google Scholar
  84. Hepp-Reymond., M-C., Wyss, U. R., & Anner, R. (1978). Neuronal coding of static force in the primate motor cortex. Journal of Physiology (Paris), 74, 287–291.Google Scholar
  85. Fetz, E. E., & Finocchio, D. (1975). Correlation between activity of motor cortex cells and arm muscles during operantly conditioned response patterns. Experimental Brain Research, 95, 217–240.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • William J. Ray
    • 1
  • Semyon Slobounov
    • 2
  1. 1.The Department of PsychologyThe Pennsylvania State UniversityUniversity Park
  2. 2.The Department of KinesiologyThe Pennsylvania State UniversityUniversity Park

Personalised recommendations