Introductory Chapter Concussion in Athletics: Ongoing Controversy

  • Semyon Slobounov
  • Wayne Sebastianelli


Multiple traumas to the brain are the most common type of catastrophic injury and a leading cause of death in athletes. Multiple brain injuries may occur as the long-term disabilities resulting from a single mild traumatic brain injury (MTBI, generally known as concussion) are often overlooked and the most obvious clinical symptoms appear to resolve rapidly. One of the reasons of controversy about concussion is that most previous research has: a) failed to provide the pre-injury status of MBTI subjects which may lead to misdiagnosis following a single brain injury of the persistent or new neurological and behavioral deficits; b) focused primarily on transient deficits after single MTBI, and failed to examine for long-term deficits and multiple MTBI; c) focused primarily on cognitive or behavioral sequelae of MTBI in isolation; and d) failed to predict athletes at risk for traumatic brain injury. It is necessary to examine for both transient and long-term behavioral, sensory-motor, cognitive, and underlying neural mechanisms that are interactively affected by MTBI. A multidisciplinary approach using advanced technologies and assessment tools may dramatically enhance our understanding of this most puzzling neurological disorder facing the sport medicine world today. This is a major objective of this chapter and the whole book at least in part to resolve existing controversies about concussion.


Injury Concussion Collegiate coaches EEG and Postural stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Shaw, N. (2002). The neurophysiology of concussion. Progress in Neurobiology, 67, 281–344.PubMedCrossRefGoogle Scholar
  2. Walker, A. E. (1994). The physiological basis of concussion: 50 years later. Journal of Neurosurgery, 81, 493–494.PubMedGoogle Scholar
  3. Cantu, R. (2003). Neurotrauma and sport medicine review, 3rd annual seminar, Orlando, Fl.Google Scholar
  4. National Institute of Health. NIH Consens Statement, v.16. Bethesda, MD: NIH, 1998.Google Scholar
  5. Guskiewicz, K.M., Ross, S.E., Marshall, S.W. (2001). Postural Stability and Neuropsychological Deficits After Concussion in Collegiate Athletes. Journal of Athletic Training, 36(3), 263–273.PubMedGoogle Scholar
  6. Guskiewicz, K.M. (2001). Postural Stability Assessment Following Concusion: One Piece of the Puzzle. Clinical Journal of Sport Medicine, 11, 82–189.CrossRefGoogle Scholar
  7. Christopher, M., & Amann, M. (2000). Office management of trauma. Clinic in Family Practice, 2(3), 24–33.Google Scholar
  8. Oliaro, S., Anderson, S., Hooker, D. (2001). Management of Cerebral Concussion in Sports: The Athletic Trainer’s Perspective. Journal of Athletic Training, 36(3):257–262.PubMedGoogle Scholar
  9. Maddocks, D., & Saling, M. (1966). Neuropsychological deficits following concussion. Brain Injury, 10,99–103.Google Scholar
  10. Wojtys, E., Hovda, D., Landry, G., Boland, A., Lovell, M., McCrea, M., Minkoff, J. (1999). Concussion in Sports. American Journal of Sports Medicine, 27(5), 676–687.PubMedGoogle Scholar
  11. Randolph, C. (2001). Implementation of neuropsychological testing models for the high school, collegiate and professional sport setting. Journal of Athletic Training, 36(3), 288–296.PubMedGoogle Scholar
  12. Warden, D.L., Bleiberg, J., Cameron, K.L., Ecklund, J., Walter, J., Sparling, M.B., Reeves, D., Reynolds, K.Y., Arciero, R. (2001). Persistent Prolongation of Simple Reaction Time in Sports Concussion. Neurology, 57(3), 22–39.Google Scholar
  13. Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head injury. EEG and Clinical Neurophysiology, 73, 94–106.CrossRefGoogle Scholar
  14. Thatcher, R. W., Biver, C., McAlister, R., Camacho, M., Salazar, A. (1998). Biophysical linkage between MRI and EEG amplitude in closed head injury. Neuroimage, 7, 352–367.PubMedCrossRefGoogle Scholar
  15. Thatcher, R.W., Biver, C., Gomez, J., North, D., Curtin, R., Walker, R., Salazar, A. (2001). Estimation of the EEG power spectrum using MTI T2 relaxation time in traumatic brain injury. Clinical Neurophysiology, 112, 1729–1745.PubMedCrossRefGoogle Scholar
  16. Barth, J.T., Freeman, J.R., Boshek, D.K., Varney, R.N. (2001). Acceleration-Deceleration Sport-Related Concussion: The Gravity of It All. Journal of Athletic Training, 36(3), 253–256.PubMedGoogle Scholar
  17. Kushner, D. (1998). Mild traumatic brain injury: Toward understanding manifestations and treatment. Archive of Internal Medicine, 158, 10–24.CrossRefGoogle Scholar
  18. Mueller, F. O., & Cantu, R. C. (1990). Catastrophic injuries and fatalities in high school and college sport. Fall 1982 — spring 1988. Medicine and Science in Sport and Exercise, 22, 737–741.Google Scholar
  19. LeBlanc, K. E. (1994). Concussion in sport: guidelines for return to competition. American Family Physician, 50, 801–808.PubMedGoogle Scholar
  20. LeBlanc, K.E. (1999). Concussion in sport: Diagnosis, management, return to competition. Comprehensive Therapy, 25, 39–44PubMedGoogle Scholar
  21. Echemendia, R.J., Putukien, M., Mackin, R.S., Julian, L., Shoss, N. (2001). Neuropsychological Test Performance Prior To and Following Sports-Related Mild Traumatic Brain Injury. Clinical Journal of Sports Medicine, 11, 23–31.CrossRefGoogle Scholar
  22. Lowell, M., Collins, M., Iverson, G., Field, M., Maroon, J., Cantu, R., Rodell, K., & Powell, J., & Fu, F. (2003). Recovery from concussion in high school athletes. Journal of Neurosurgery, 98, 296–301.CrossRefGoogle Scholar
  23. Lowell, M. (2003). Ancillary test for concussion. Neurotrauma and sport medicine review. 3rd annual seminar, Orlando, Fl.Google Scholar
  24. Macciocchi, S. T., Barth, J. T., Alves, W., Rimel, R. W., & Jane, J. (1966). Neuropsychological functioning and recovery after mind head injury in collegiate athletes. Neurosurgery, 3, 510–513Google Scholar
  25. Hudson, T. (2000). Evidence of cellular damage in normal-appearing white matter correlates with injury severity inpatients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain, 123(7), 1403–1409.PubMedCrossRefGoogle Scholar
  26. Cantu, R. C., & Roy, R. (1995). Second impact syndrome: a risk in any sport. Physical Sport Medicine, 23, 27–36.Google Scholar
  27. Hugenholtz, H., Stuss, D. T., Stethen, L. L, & Richards, M. T. (1988). How long does it take to recover from a mild concussion? Neurosurgery, 22(5), 853–857.PubMedGoogle Scholar
  28. Powell, J. (2001). Cerebral Concussion. Causes, Effects, and Risks in Sports. Journal of Athletic Training, 36(3), 307–311.PubMedGoogle Scholar
  29. Wright, S. C. (1998). Case report: postconcussion syndrome after minor head injury. Aviation, Space Environmental Medicine, 69(10), 999–1000.Google Scholar
  30. Slobounov, S., Sebastianelli, W., Simon, R. (2002d). Neurophysiological and behavioral Concomitants of Mild Brain Injury in College Athletes. Clinical Neurophysiology, 113, 185–193.PubMedCrossRefGoogle Scholar
  31. Goldberg, G. (1988). What happens after brain injury? You may be surprised at how rehabilitation can help your patients. Brain injury, 104(2), 91–105.Google Scholar
  32. Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Review, 36, 169–174.CrossRefGoogle Scholar
  33. Levin, N. S., Mattis, S., Raff, R. M., Eisenberg, H. M., Marshall, L. F., & Tabaddor, K. (1987). Neurobehavioral outcome following minor head injury: a three center study. Journal of Neurosurgery, 66, 234–243.PubMedCrossRefGoogle Scholar
  34. Johnston, K, Ptito, A., Chsnkowsky, J., Chen, J. (2001). New frontiers in diagnostic imaging in concussive head injury. Clinical Journal of Sport Medicine, 11(3), 166–175.PubMedCrossRefGoogle Scholar
  35. Lishman, W. A. (1988). Physiogenesis and psychogenesis in the post-concussional syndrome. Biological Journal of Psychiatry, 153,460–469.CrossRefGoogle Scholar
  36. McClelland, R. J., Fenton, G. W., Rutherford, W. (1994). The postconcussional syndrome revisited. Journal of the Royal Society of Medicine, 87, 508–510.PubMedGoogle Scholar
  37. Bryant R., & Harvey, A. (1999). Postconcussive symptoms and posttraumatic stress disorder after mind traumatic brain injury. Journal of Nervous Mental Disease, 187, 302–305.CrossRefGoogle Scholar
  38. Buchel, C. & Friston, K. (2001). Extracting brain connectivity. In Function MRI: an introduction to methods. Jezzard, P. Matthews, P.M., & Smith, S.M. (Eds). pp.295–308. Oxford University Press: N.Y.Google Scholar
  39. Cabeza, R., Dolcos, F., Prince S.E., Rice, H.J., Weissman, D.H., Nyberg, L. (2003). Neuropsychologia, 41(3), 390–399.PubMedCrossRefGoogle Scholar
  40. Friston, K.J., Holmes, A., Poline, J.B., Price, C.J., & Frith, CD. (1996). Detecting activations in PET and fMRI: Levels of inference and power. Neuroimage 40, 223–235.CrossRefGoogle Scholar
  41. Friston, K.J., Holmes, A, P., & Worsley K..J. (1999). How many subjects constitute a study? Neuroimage, 10, 1–5.PubMedCrossRefGoogle Scholar
  42. Rees, G. & Lavie, N. (2001). What can functional imaging reveal about the role of attention in visual awareness? Neuropsyschologia, 39(12), 1343–1353.CrossRefGoogle Scholar
  43. Stuss, D., & Knight, R. (2002). Principles of frontal lobe function. Oxford, University PressGoogle Scholar
  44. Levin, B., Katz, D., Dade, L., Black, S. (2002). Novel approach to the assessment of frontal damage and executive deficits in traumatic brain injury. In: Principles of frontal lobe function Stuss & Knight (Eds.)pp. 448–465.Google Scholar
  45. Gentry, L., Godersky, J., Thompson, B., Dunn, V. (1988). Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma. American Journal of Radiology, 150,673–682.Google Scholar
  46. Liu, A., Maldjian, J., Bagley, L., (1999). Traumatic brain injury:diffusion-weighted MR imaging findings. AJNR, 20, 1636–1641PubMedGoogle Scholar
  47. Hofman, P., Verhey, F., Wilmink, J., Rozendaal, N., & Jolles, J. (2002). Brain lesions in patients visiting a memory clinic with postconcussional sequelae after mild to moderate brain injury. Journal of Neuropsychiatry and Clinical Neuroscience, 14(2), 176–184.Google Scholar
  48. Umile, E., Sandel, M., Alavi, A., Terry, C., Plotkin, R. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Archive of Physical Medical Rehabilitation, 83(11), 1506–1513.Google Scholar
  49. Mittl, R., Grossman, R., Hiehle, J., Hurst, R., Kauder, D., Gennarelli, T., Alburger, G. (1994). Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. American Journal of Neuroradiology, 15(8), 1583–1589.PubMedGoogle Scholar
  50. Ross, B., Bluml, S. (2001). Magnetic Resonance spectroscopy of the human brain. The American Records (New Anat), 265, 54–84.CrossRefGoogle Scholar
  51. Schubert, T., Szameitat, A. (2003). Functional neuroanatomy of interference in overlapping dual tasks: fMRI study. Cognitive Brain Research, 23, 334–348.Google Scholar
  52. Chen, J-K., Johnston, Frey, S., Petrides, K., Worsley, K., Ptito, A. (2003). Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage, 22, 68–82.CrossRefGoogle Scholar
  53. Shtein, S. (1903). A new instrument — Plegimeter. Moscow: MEDG1Z.Google Scholar
  54. McCollum, G. & Leen, T. (1989). Form and exploration of mechanical stability in erect stance. Journal of Motor Behavior, 21, 225–244.PubMedGoogle Scholar
  55. Diener, H., Horak, F., Nashner, L. (1988). Influence of stimulus parameters on human postural responses. Journal of Neurophysiology, 59, 1888–1903.PubMedGoogle Scholar
  56. Riach, C., Hayes, K. (1990). Anticipatory postural control in children. Journal of Motor Behavior, 22, 250–266.PubMedGoogle Scholar
  57. Jeka, J., & Lackner, J. (1994). Fingertip contract influences human postural control. Experimental Brain Research, 100, 495–502.Google Scholar
  58. Barela, J., Jeka, J., Clark, J. (2003). Postural control in children. Experimental Brain Research, 150,434–442.Google Scholar
  59. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA. Houghton Mifflin.Google Scholar
  60. Riccio, G., & Stoffregen, T. (1988). Affordances as constraints on the control of stance. Human Movement Science, 11, 265–300.CrossRefGoogle Scholar
  61. Nashner, L. M. (1977). Fixed patterns of rapid postural responses among leg muscles during stance. Experimental Brain Research, 30, 13–24.CrossRefGoogle Scholar
  62. Goldie, P. A., Bach, T. M., & Evans, O. M. (1989). Center of pressure measurement and postural stability. Archives of physical medicine and rehabilitation, 70, 510–517.PubMedGoogle Scholar
  63. Nashner, L. M., Dianer, H. C., & Horak, F, B. (1985). Selecting of human postural synergies differ with peripheral somatosensory vs. vestibular loss. Society of Neuroscience Abstracts, 11, 704.Google Scholar
  64. Hu, M. H., & Woollacott, M. H. (1992). A training program to improve standing balance under different sensory conditions. In M. Woollacoot and F. Horak (Eds.), Posture and gait: Control mechanisms, Vol.1 (pp. 199–202). University of Oregon Books.Google Scholar
  65. Slobounov, S. M., & Newell, K. M. (1994a). Dynamics of upright stance in the 3-years-old and 5-years-old children. Human Movement Science, 13, 861–675.CrossRefGoogle Scholar
  66. Slobounov, S. M., & Newell, K. M. (1994b). Postural dynamic as a function of skill level and task constraints. Gait and Posture, 2, 85–93.CrossRefGoogle Scholar
  67. Slobounov S. M., & Newell, K. M. (1995). Postural dynamics in upright and inverted stances. Journal of Applied Biomechanics, 12(2), 185–196.Google Scholar
  68. Slobounov, S, Slobounova, E., & Newell, K. (1998a). Virtual time-to-collision and human postural control. Journal of Motor Behavior, 29, 263–281.CrossRefGoogle Scholar
  69. Slobounov, S., Moose, E. Slobounova, E. & Newell, K. (1998b). Aging and time to instability in posture. Journal of Gerontology: Biological Sciences, 53A(1), B71–B78.Google Scholar
  70. Winter, D. A. (1990). Biomechanics and motor control of human movements (2nd ed.). New York: John Wiley & Sons, Inc.Google Scholar
  71. Lichtenstein, M.J., Shields, S.L., Shiavi, R.G. & Burger, M.C.(1988). Clinical determinant of biomechanical platform measures of balance in aged women. Journal of American Geriatric Society, 36, 996–1002.Google Scholar
  72. Lajoie, Y., Girard, A., Guay, M. (2002). Comparison of the reaction time, the Berg Scale and the ABC in non-fallers and fallers. Archives of Gerontology and Geriatrics, 35(3), 215–225.PubMedCrossRefGoogle Scholar
  73. Patla, A, Frank, J., & Winter, D. (1990). Assessment of balance control in the elderly: Major issues. Physiotherapy Canada, 42, 89–97.CrossRefGoogle Scholar
  74. Slobounov, S., Hallett, M., Stanhope, S., Shibasaki, H. (2005a). Role of cerebral cortex in human postural control: an EEG study. Clinical Neurophysiology, 116, 315–323.PubMedCrossRefGoogle Scholar
  75. Ingelsoll, C. D., & Armstrong, C. W. (1992). The effect of closed-head injury on postural sway. Medicine in Science, Sports & Exercise, 24, 739–743.Google Scholar
  76. Wober, C., Oder, W., Kollegger, H., Prayer, L., Baumgartner, C., & Wober-Bingol, C. (1993). Posturagraphic measurement of body sway in survivors of severe closed-head injury. Archive of Physical Medical Rehabilitation, 74, 1151–1156.Google Scholar
  77. Geurts, A., Knoop, J., & van Limbeek, J. (1999). Is postural control associated with mental functioning is the persistent postconcussion syndrome? Archive Physical Rehabilitation, 80, 144–149.CrossRefGoogle Scholar
  78. Woollacott, M, & Shumway-Cook, A.(2002). Changes in posture control across the life-span — a system approach. Physical Therapy, 70, 799–807.Google Scholar
  79. Guskiewicz, K.M., Riemann, B.L., Perrin, D.H., Nashner, L.M. (1997). Alternative Approaches to the Assessment of Mild Head Injury in Athletes. Medicine and Science in Sports and Exercise, 29(7), 213–221.Google Scholar
  80. Rieman, B. & Guskiewicz, K. (2002). Effect of mild head injury on postural stability as measured through clinical balance testing. Journal of Athletic Training, 35, 19–25.Google Scholar
  81. Valovich, T., Periin, D., Gansneder, B. (2003). Repeat administration elicits a practice effect with the balance error scoring system but not with the standardized assessment of concussion in high school athletes. Journal of Athletic Training, 38(10), 51–56.PubMedGoogle Scholar
  82. Peterson, C., Ferrara, M., Mrazik, M., Piland, S., Elliott, R. (2003). Evaluation of neuropsychological domain scores and postural stability following cerebral concussion in sport. Clinical Journal of Sport Medicine, 13(4), 230–237.PubMedCrossRefGoogle Scholar
  83. Guskiewicz, K. (2003). Assessment of postural stability following sport-related concussion. Current Sport Medicine Reports, 2(1), 24–30.Google Scholar
  84. Povlishock, J. T., Erb, D. E., & Astruc, J. (1992). Axonal response to traumatic brain injury: reactive axonal change, deafferentation and neuroplasticity. Journal of Neurotrauma, 9(suppl.1), 189–200.Google Scholar
  85. Slobounov, S., Slobounova, E., Sebastianelli, W. (2005c, in press). Neural underpinning of egomotion indiced by virtual reality graphics. Biological Psychology.Google Scholar
  86. Keshner, E.A., Kenyon, R.V. (2000). The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. Journal of Vestibular Research, July, 1–12.Google Scholar
  87. Keshner, E., Kenyon, R.V. (2004). Using immersive technology for postural research and rehabilitation. Assisting Technology, 16(1), 54–62.Google Scholar
  88. Keshner, E., Kenyon, R., Langston, J. (2004). Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research, 14(4), 307–319.PubMedGoogle Scholar
  89. Keshner, E., Kenyon, RV., Dhaher, YY., Streepey, JW. (2004). Employing a virtual environment in postural research and rehabilitation to reveal the impact of visual information. International conference on disability. Virtual Reality, and Associated Technologies. New College, Oxford, UK.Google Scholar
  90. Martin, J. N. (1991). Anatomy of the somatic sensory system. In E. R. Kendel, J. H. Schwartz & T. M. Jessell (Eds.), Principle of neuroscience. Appleton & Lange: Norwalk.Google Scholar
  91. Barlow, J. S. (1993). The Electroencephalogram: Its patterns and origins. Cambridge: MIT Press.Google Scholar
  92. Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Review, 70, 1–41.Google Scholar
  93. Pfurtscheller, G, & Lopes de Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization:basic principes. Clinical Neurophysiology, 110, 1842–1857.PubMedCrossRefGoogle Scholar
  94. Nunez, P. (2000). Toward a quantitative description of large scale neocortical dynamic function and EEG. Behavioral Brain Research, 23(3), 371–437.CrossRefGoogle Scholar
  95. Gevins, A. S., Morgan, N. H., & Bressler, S. L. (1987). Human neuroelectric patterns predict performance accuracy. Science, 235(4788), 580–585.PubMedGoogle Scholar
  96. Smith, M., McEvoy, L., & Gevins, A. (1999). Neurophysiological indices of strategy developnelment and skill acquisition. Cognitive Brain Research, 7, 389–404.PubMedCrossRefGoogle Scholar
  97. Slobounov, S., & Tutwiler, R., & Slobounova, E. (2000a). Human oscillatory activity within gamma-band (30–50 Hz) induced by visual recognition of non-stable postures. Cognitive Brain Research, 9, 292–392.Google Scholar
  98. Slobounov, S., Fukada, K., Simon, R., Rearick, M., Ray, W. (2000b). Neurophysiological and behavioral correlates of time pressure effects on performance in cognitive-motor tasks. Cognitive Brain Research, 9, 287–298.PubMedCrossRefGoogle Scholar
  99. Jasper, H., & Penfield, W. (1949). Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch.Psychiat. Vol.183, pp. 163–174.CrossRefGoogle Scholar
  100. Pfurtscheller, G. (1981). Central beta rhythm during sensory motor activities in man. EEG and Clinical Neurophysiology, 51, 253–264.CrossRefGoogle Scholar
  101. Sheer,. E. (1976). Focused arousal and 40 Hz-EEG. In R. M. Knight and D. J.Bakker (Eds.), The Neuropsychology of Leaning Disorders, (pp. 71–87). University Park Press, Baltimore.Google Scholar
  102. Basar, E., & Demiralp, T. (1995). Fast rhythms in the hippocampus are a part of the diffuse gamma response system. Hippocampus, 5, 240–241.PubMedCrossRefGoogle Scholar
  103. Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(3), 4240–4249.PubMedGoogle Scholar
  104. Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17(2), 722–734.PubMedGoogle Scholar
  105. Slobounov, S., Tutwiler, R. Slobounova, E. (1998c). Perception of postural instability as revealed by wavelet transform. IEEE Signal Processing, 12(5), 234–238.Google Scholar
  106. Kornhuber, H. H., & Deecke, L. (1965). Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des Menschen. Bereitschaftspotential und reafferente Potential. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 284, 1–17.PubMedCrossRefGoogle Scholar
  107. Kutas, M. & Donchin, E. (1974). Studies squeezing: The effects of handedness. The responding hand and response force on the contralateral dominance of readiness potential. Science 186, 545–548PubMedGoogle Scholar
  108. Kristeva, R., Cheyne, D., Lang, W., Lindinger, G. & Deecke, L. (1990). Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. EEG and Clinical Neurophysiology, 74, 10–418.Google Scholar
  109. Cooper, R., McCallum, W. C., & Cornthwaite, S. P. (1989). Slow potential changes related to the velocity of target movement in a tracking task. EEG and Clinical Neurophysiology, 72, 232–239.CrossRefGoogle Scholar
  110. Lang, W., Zilch, O., Koska, C., Lindinger, G., & Deecke, L. (1989). Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Experimental Brain Research, 74, 99–104.CrossRefGoogle Scholar
  111. Slobounov, S. M., & Ray, W. (1998). Movement related brain potentials and task complexity. Experimental Brain Research, 13, 876–886Google Scholar
  112. Slobounov, S., Johnston, J., Chiang, H., & Ray, W. (2002a). The role of sub-maximal force production in the enslaving phenomenon. Brain Research, 954, 212–219.PubMedCrossRefGoogle Scholar
  113. Slobounov, S, Johnston, J., Ray, W, Chiang, H. (2002b). Motor-related cortical potentials accompanying enslaving effect in single versus combination of fingers force production tasks. Clinical Neurophysiology, 113, 1444–1453.PubMedCrossRefGoogle Scholar
  114. Slobounov, S., Chiang, H., Johnston, J., Ray, W. (2002c). Modulated cortical control of individual fingers in experienced musicians: an EEG study. Clinical Neurophysiology, 113, 2013–2024.PubMedCrossRefGoogle Scholar
  115. Jahanshahi, M., & Hallett, M. (2003). The Bereitschaftpotential: Movement-related cortical potentials. Kluger Academic/Plenum Publishers. NY.Google Scholar
  116. Geets, W., & Louette, N (1985). Early EEG in 300 cerebral concussions. EEG and Clinical Neurophysiology, 14(4), 333–338.Google Scholar
  117. Tebano, T. M., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pessizi, G., & Ricci, G. F. (1988). EEG spectral analysis after minor head injury in man. EEG and Clinical Neurophysiology, 70, 185–189.CrossRefGoogle Scholar
  118. Montgomery, A., Fenton, G. W., McCLelland, R. J., MacFlyn, G., & Rutherford, W. H. (1991). The psychobiology of minor head injury. Psychological Medicine, 21, 375–384.PubMedCrossRefGoogle Scholar
  119. Pratar-Chand, R., Sinniah, M., & Salem, F. A. (1988). Cognitive evoked potential (P300): a metric for cerebral concussion. Acta Neurologia Scandinavia, 78, 185–189.CrossRefGoogle Scholar
  120. Watson, W. R., Fenton, R. J. McClelland, J., Lumbsden, J., Headley, ML, & Rutherford, W. H. (1995). The post-concussional state: Neurophysiological aspects. British Journal of Psychiatry, 167,514–521.PubMedGoogle Scholar
  121. Thornton, K. E. (1999). Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32–64 Hz). Brain Injury, 13(7), 477–488.PubMedCrossRefGoogle Scholar
  122. Pointinger, H., Sarahrudi, K., Poeschl, G., Munk, P. (2002). Electroencephalography in primary diagnosis of mild head trauma. Brain Injury, 16(9), 799–805.PubMedCrossRefGoogle Scholar
  123. Thompson, J., Sebastianelli, W., Slobounov, S. (2005). EEG and postural correlates of mild traumatic brain injury in athletes. Neuroscience Letters, 377, 158–163.PubMedCrossRefGoogle Scholar
  124. Slobounov, S., Sebastianelli, W., Moss, R. (2005b). Alteration of posture-related cortical potentials in mild traumatic brain injury. Neuroscience Letters, 383, 251–255.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Semyon Slobounov
    • 1
  • Wayne Sebastianelli
    • 2
  1. 1.The Department of KinesiologyThe Pennsylvania State UniversityUniversity Park
  2. 2.Department of Orthopaedics and Medical Rehabilitation, Milton Hershey Medical College, Sport Medicine CenterThe Pennsylvania State UniversityUniversity Park

Personalised recommendations