Skip to main content

Introductory Chapter Concussion in Athletics: Ongoing Controversy

  • Chapter
Foundations of Sport-Related Brain Injuries

Abstract

Multiple traumas to the brain are the most common type of catastrophic injury and a leading cause of death in athletes. Multiple brain injuries may occur as the long-term disabilities resulting from a single mild traumatic brain injury (MTBI, generally known as concussion) are often overlooked and the most obvious clinical symptoms appear to resolve rapidly. One of the reasons of controversy about concussion is that most previous research has: a) failed to provide the pre-injury status of MBTI subjects which may lead to misdiagnosis following a single brain injury of the persistent or new neurological and behavioral deficits; b) focused primarily on transient deficits after single MTBI, and failed to examine for long-term deficits and multiple MTBI; c) focused primarily on cognitive or behavioral sequelae of MTBI in isolation; and d) failed to predict athletes at risk for traumatic brain injury. It is necessary to examine for both transient and long-term behavioral, sensory-motor, cognitive, and underlying neural mechanisms that are interactively affected by MTBI. A multidisciplinary approach using advanced technologies and assessment tools may dramatically enhance our understanding of this most puzzling neurological disorder facing the sport medicine world today. This is a major objective of this chapter and the whole book at least in part to resolve existing controversies about concussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rererences

  • Shaw, N. (2002). The neurophysiology of concussion. Progress in Neurobiology, 67, 281–344.

    Article  PubMed  CAS  Google Scholar 

  • Walker, A. E. (1994). The physiological basis of concussion: 50 years later. Journal of Neurosurgery, 81, 493–494.

    PubMed  CAS  Google Scholar 

  • Cantu, R. (2003). Neurotrauma and sport medicine review, 3rd annual seminar, Orlando, Fl.

    Google Scholar 

  • National Institute of Health. NIH Consens Statement, v.16. Bethesda, MD: NIH, 1998.

    Google Scholar 

  • Guskiewicz, K.M., Ross, S.E., Marshall, S.W. (2001). Postural Stability and Neuropsychological Deficits After Concussion in Collegiate Athletes. Journal of Athletic Training, 36(3), 263–273.

    PubMed  Google Scholar 

  • Guskiewicz, K.M. (2001). Postural Stability Assessment Following Concusion: One Piece of the Puzzle. Clinical Journal of Sport Medicine, 11, 82–189.

    Article  Google Scholar 

  • Christopher, M., & Amann, M. (2000). Office management of trauma. Clinic in Family Practice, 2(3), 24–33.

    Google Scholar 

  • Oliaro, S., Anderson, S., Hooker, D. (2001). Management of Cerebral Concussion in Sports: The Athletic Trainer’s Perspective. Journal of Athletic Training, 36(3):257–262.

    PubMed  Google Scholar 

  • Maddocks, D., & Saling, M. (1966). Neuropsychological deficits following concussion. Brain Injury, 10,99–103.

    Google Scholar 

  • Wojtys, E., Hovda, D., Landry, G., Boland, A., Lovell, M., McCrea, M., Minkoff, J. (1999). Concussion in Sports. American Journal of Sports Medicine, 27(5), 676–687.

    PubMed  CAS  Google Scholar 

  • Randolph, C. (2001). Implementation of neuropsychological testing models for the high school, collegiate and professional sport setting. Journal of Athletic Training, 36(3), 288–296.

    PubMed  Google Scholar 

  • Warden, D.L., Bleiberg, J., Cameron, K.L., Ecklund, J., Walter, J., Sparling, M.B., Reeves, D., Reynolds, K.Y., Arciero, R. (2001). Persistent Prolongation of Simple Reaction Time in Sports Concussion. Neurology, 57(3), 22–39.

    Google Scholar 

  • Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head injury. EEG and Clinical Neurophysiology, 73, 94–106.

    Article  CAS  Google Scholar 

  • Thatcher, R. W., Biver, C., McAlister, R., Camacho, M., Salazar, A. (1998). Biophysical linkage between MRI and EEG amplitude in closed head injury. Neuroimage, 7, 352–367.

    Article  PubMed  CAS  Google Scholar 

  • Thatcher, R.W., Biver, C., Gomez, J., North, D., Curtin, R., Walker, R., Salazar, A. (2001). Estimation of the EEG power spectrum using MTI T2 relaxation time in traumatic brain injury. Clinical Neurophysiology, 112, 1729–1745.

    Article  PubMed  CAS  Google Scholar 

  • Barth, J.T., Freeman, J.R., Boshek, D.K., Varney, R.N. (2001). Acceleration-Deceleration Sport-Related Concussion: The Gravity of It All. Journal of Athletic Training, 36(3), 253–256.

    PubMed  Google Scholar 

  • Kushner, D. (1998). Mild traumatic brain injury: Toward understanding manifestations and treatment. Archive of Internal Medicine, 158, 10–24.

    Article  Google Scholar 

  • Mueller, F. O., & Cantu, R. C. (1990). Catastrophic injuries and fatalities in high school and college sport. Fall 1982 — spring 1988. Medicine and Science in Sport and Exercise, 22, 737–741.

    CAS  Google Scholar 

  • LeBlanc, K. E. (1994). Concussion in sport: guidelines for return to competition. American Family Physician, 50, 801–808.

    PubMed  CAS  Google Scholar 

  • LeBlanc, K.E. (1999). Concussion in sport: Diagnosis, management, return to competition. Comprehensive Therapy, 25, 39–44

    PubMed  CAS  Google Scholar 

  • Echemendia, R.J., Putukien, M., Mackin, R.S., Julian, L., Shoss, N. (2001). Neuropsychological Test Performance Prior To and Following Sports-Related Mild Traumatic Brain Injury. Clinical Journal of Sports Medicine, 11, 23–31.

    Article  CAS  Google Scholar 

  • Lowell, M., Collins, M., Iverson, G., Field, M., Maroon, J., Cantu, R., Rodell, K., & Powell, J., & Fu, F. (2003). Recovery from concussion in high school athletes. Journal of Neurosurgery, 98, 296–301.

    Article  Google Scholar 

  • Lowell, M. (2003). Ancillary test for concussion. Neurotrauma and sport medicine review. 3rd annual seminar, Orlando, Fl.

    Google Scholar 

  • Macciocchi, S. T., Barth, J. T., Alves, W., Rimel, R. W., & Jane, J. (1966). Neuropsychological functioning and recovery after mind head injury in collegiate athletes. Neurosurgery, 3, 510–513

    Google Scholar 

  • Hudson, T. (2000). Evidence of cellular damage in normal-appearing white matter correlates with injury severity inpatients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain, 123(7), 1403–1409.

    Article  PubMed  Google Scholar 

  • Cantu, R. C., & Roy, R. (1995). Second impact syndrome: a risk in any sport. Physical Sport Medicine, 23, 27–36.

    Google Scholar 

  • Hugenholtz, H., Stuss, D. T., Stethen, L. L, & Richards, M. T. (1988). How long does it take to recover from a mild concussion? Neurosurgery, 22(5), 853–857.

    PubMed  CAS  Google Scholar 

  • Powell, J. (2001). Cerebral Concussion. Causes, Effects, and Risks in Sports. Journal of Athletic Training, 36(3), 307–311.

    PubMed  Google Scholar 

  • Wright, S. C. (1998). Case report: postconcussion syndrome after minor head injury. Aviation, Space Environmental Medicine, 69(10), 999–1000.

    CAS  Google Scholar 

  • Slobounov, S., Sebastianelli, W., Simon, R. (2002d). Neurophysiological and behavioral Concomitants of Mild Brain Injury in College Athletes. Clinical Neurophysiology, 113, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, G. (1988). What happens after brain injury? You may be surprised at how rehabilitation can help your patients. Brain injury, 104(2), 91–105.

    Google Scholar 

  • Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Review, 36, 169–174.

    Article  CAS  Google Scholar 

  • Levin, N. S., Mattis, S., Raff, R. M., Eisenberg, H. M., Marshall, L. F., & Tabaddor, K. (1987). Neurobehavioral outcome following minor head injury: a three center study. Journal of Neurosurgery, 66, 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, K, Ptito, A., Chsnkowsky, J., Chen, J. (2001). New frontiers in diagnostic imaging in concussive head injury. Clinical Journal of Sport Medicine, 11(3), 166–175.

    Article  PubMed  CAS  Google Scholar 

  • Lishman, W. A. (1988). Physiogenesis and psychogenesis in the post-concussional syndrome. Biological Journal of Psychiatry, 153,460–469.

    Article  CAS  Google Scholar 

  • McClelland, R. J., Fenton, G. W., Rutherford, W. (1994). The postconcussional syndrome revisited. Journal of the Royal Society of Medicine, 87, 508–510.

    PubMed  CAS  Google Scholar 

  • Bryant R., & Harvey, A. (1999). Postconcussive symptoms and posttraumatic stress disorder after mind traumatic brain injury. Journal of Nervous Mental Disease, 187, 302–305.

    Article  CAS  Google Scholar 

  • Buchel, C. & Friston, K. (2001). Extracting brain connectivity. In Function MRI: an introduction to methods. Jezzard, P. Matthews, P.M., & Smith, S.M. (Eds). pp.295–308. Oxford University Press: N.Y.

    Google Scholar 

  • Cabeza, R., Dolcos, F., Prince S.E., Rice, H.J., Weissman, D.H., Nyberg, L. (2003). Neuropsychologia, 41(3), 390–399.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Holmes, A., Poline, J.B., Price, C.J., & Frith, CD. (1996). Detecting activations in PET and fMRI: Levels of inference and power. Neuroimage 40, 223–235.

    Article  Google Scholar 

  • Friston, K.J., Holmes, A, P., & Worsley K..J. (1999). How many subjects constitute a study? Neuroimage, 10, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Rees, G. & Lavie, N. (2001). What can functional imaging reveal about the role of attention in visual awareness? Neuropsyschologia, 39(12), 1343–1353.

    Article  CAS  Google Scholar 

  • Stuss, D., & Knight, R. (2002). Principles of frontal lobe function. Oxford, University Press

    Google Scholar 

  • Levin, B., Katz, D., Dade, L., Black, S. (2002). Novel approach to the assessment of frontal damage and executive deficits in traumatic brain injury. In: Principles of frontal lobe function Stuss & Knight (Eds.)pp. 448–465.

    Google Scholar 

  • Gentry, L., Godersky, J., Thompson, B., Dunn, V. (1988). Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma. American Journal of Radiology, 150,673–682.

    CAS  Google Scholar 

  • Liu, A., Maldjian, J., Bagley, L., (1999). Traumatic brain injury:diffusion-weighted MR imaging findings. AJNR, 20, 1636–1641

    PubMed  CAS  Google Scholar 

  • Hofman, P., Verhey, F., Wilmink, J., Rozendaal, N., & Jolles, J. (2002). Brain lesions in patients visiting a memory clinic with postconcussional sequelae after mild to moderate brain injury. Journal of Neuropsychiatry and Clinical Neuroscience, 14(2), 176–184.

    Google Scholar 

  • Umile, E., Sandel, M., Alavi, A., Terry, C., Plotkin, R. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Archive of Physical Medical Rehabilitation, 83(11), 1506–1513.

    Google Scholar 

  • Mittl, R., Grossman, R., Hiehle, J., Hurst, R., Kauder, D., Gennarelli, T., Alburger, G. (1994). Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. American Journal of Neuroradiology, 15(8), 1583–1589.

    PubMed  CAS  Google Scholar 

  • Ross, B., Bluml, S. (2001). Magnetic Resonance spectroscopy of the human brain. The American Records (New Anat), 265, 54–84.

    Article  CAS  Google Scholar 

  • Schubert, T., Szameitat, A. (2003). Functional neuroanatomy of interference in overlapping dual tasks: fMRI study. Cognitive Brain Research, 23, 334–348.

    Google Scholar 

  • Chen, J-K., Johnston, Frey, S., Petrides, K., Worsley, K., Ptito, A. (2003). Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage, 22, 68–82.

    Article  Google Scholar 

  • Shtein, S. (1903). A new instrument — Plegimeter. Moscow: MEDG1Z.

    Google Scholar 

  • McCollum, G. & Leen, T. (1989). Form and exploration of mechanical stability in erect stance. Journal of Motor Behavior, 21, 225–244.

    PubMed  CAS  Google Scholar 

  • Diener, H., Horak, F., Nashner, L. (1988). Influence of stimulus parameters on human postural responses. Journal of Neurophysiology, 59, 1888–1903.

    PubMed  CAS  Google Scholar 

  • Riach, C., Hayes, K. (1990). Anticipatory postural control in children. Journal of Motor Behavior, 22, 250–266.

    PubMed  CAS  Google Scholar 

  • Jeka, J., & Lackner, J. (1994). Fingertip contract influences human postural control. Experimental Brain Research, 100, 495–502.

    CAS  Google Scholar 

  • Barela, J., Jeka, J., Clark, J. (2003). Postural control in children. Experimental Brain Research, 150,434–442.

    Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA. Houghton Mifflin.

    Google Scholar 

  • Riccio, G., & Stoffregen, T. (1988). Affordances as constraints on the control of stance. Human Movement Science, 11, 265–300.

    Article  Google Scholar 

  • Nashner, L. M. (1977). Fixed patterns of rapid postural responses among leg muscles during stance. Experimental Brain Research, 30, 13–24.

    Article  CAS  Google Scholar 

  • Goldie, P. A., Bach, T. M., & Evans, O. M. (1989). Center of pressure measurement and postural stability. Archives of physical medicine and rehabilitation, 70, 510–517.

    PubMed  CAS  Google Scholar 

  • Nashner, L. M., Dianer, H. C., & Horak, F, B. (1985). Selecting of human postural synergies differ with peripheral somatosensory vs. vestibular loss. Society of Neuroscience Abstracts, 11, 704.

    Google Scholar 

  • Hu, M. H., & Woollacott, M. H. (1992). A training program to improve standing balance under different sensory conditions. In M. Woollacoot and F. Horak (Eds.), Posture and gait: Control mechanisms, Vol.1 (pp. 199–202). University of Oregon Books.

    Google Scholar 

  • Slobounov, S. M., & Newell, K. M. (1994a). Dynamics of upright stance in the 3-years-old and 5-years-old children. Human Movement Science, 13, 861–675.

    Article  Google Scholar 

  • Slobounov, S. M., & Newell, K. M. (1994b). Postural dynamic as a function of skill level and task constraints. Gait and Posture, 2, 85–93.

    Article  Google Scholar 

  • Slobounov S. M., & Newell, K. M. (1995). Postural dynamics in upright and inverted stances. Journal of Applied Biomechanics, 12(2), 185–196.

    Google Scholar 

  • Slobounov, S, Slobounova, E., & Newell, K. (1998a). Virtual time-to-collision and human postural control. Journal of Motor Behavior, 29, 263–281.

    Article  Google Scholar 

  • Slobounov, S., Moose, E. Slobounova, E. & Newell, K. (1998b). Aging and time to instability in posture. Journal of Gerontology: Biological Sciences, 53A(1), B71–B78.

    Google Scholar 

  • Winter, D. A. (1990). Biomechanics and motor control of human movements (2nd ed.). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Lichtenstein, M.J., Shields, S.L., Shiavi, R.G. & Burger, M.C.(1988). Clinical determinant of biomechanical platform measures of balance in aged women. Journal of American Geriatric Society, 36, 996–1002.

    CAS  Google Scholar 

  • Lajoie, Y., Girard, A., Guay, M. (2002). Comparison of the reaction time, the Berg Scale and the ABC in non-fallers and fallers. Archives of Gerontology and Geriatrics, 35(3), 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Patla, A, Frank, J., & Winter, D. (1990). Assessment of balance control in the elderly: Major issues. Physiotherapy Canada, 42, 89–97.

    Article  Google Scholar 

  • Slobounov, S., Hallett, M., Stanhope, S., Shibasaki, H. (2005a). Role of cerebral cortex in human postural control: an EEG study. Clinical Neurophysiology, 116, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Ingelsoll, C. D., & Armstrong, C. W. (1992). The effect of closed-head injury on postural sway. Medicine in Science, Sports & Exercise, 24, 739–743.

    Google Scholar 

  • Wober, C., Oder, W., Kollegger, H., Prayer, L., Baumgartner, C., & Wober-Bingol, C. (1993). Posturagraphic measurement of body sway in survivors of severe closed-head injury. Archive of Physical Medical Rehabilitation, 74, 1151–1156.

    CAS  Google Scholar 

  • Geurts, A., Knoop, J., & van Limbeek, J. (1999). Is postural control associated with mental functioning is the persistent postconcussion syndrome? Archive Physical Rehabilitation, 80, 144–149.

    Article  CAS  Google Scholar 

  • Woollacott, M, & Shumway-Cook, A.(2002). Changes in posture control across the life-span — a system approach. Physical Therapy, 70, 799–807.

    Google Scholar 

  • Guskiewicz, K.M., Riemann, B.L., Perrin, D.H., Nashner, L.M. (1997). Alternative Approaches to the Assessment of Mild Head Injury in Athletes. Medicine and Science in Sports and Exercise, 29(7), 213–221.

    Google Scholar 

  • Rieman, B. & Guskiewicz, K. (2002). Effect of mild head injury on postural stability as measured through clinical balance testing. Journal of Athletic Training, 35, 19–25.

    Google Scholar 

  • Valovich, T., Periin, D., Gansneder, B. (2003). Repeat administration elicits a practice effect with the balance error scoring system but not with the standardized assessment of concussion in high school athletes. Journal of Athletic Training, 38(10), 51–56.

    PubMed  Google Scholar 

  • Peterson, C., Ferrara, M., Mrazik, M., Piland, S., Elliott, R. (2003). Evaluation of neuropsychological domain scores and postural stability following cerebral concussion in sport. Clinical Journal of Sport Medicine, 13(4), 230–237.

    Article  PubMed  Google Scholar 

  • Guskiewicz, K. (2003). Assessment of postural stability following sport-related concussion. Current Sport Medicine Reports, 2(1), 24–30.

    Google Scholar 

  • Povlishock, J. T., Erb, D. E., & Astruc, J. (1992). Axonal response to traumatic brain injury: reactive axonal change, deafferentation and neuroplasticity. Journal of Neurotrauma, 9(suppl.1), 189–200.

    Google Scholar 

  • Slobounov, S., Slobounova, E., Sebastianelli, W. (2005c, in press). Neural underpinning of egomotion indiced by virtual reality graphics. Biological Psychology.

    Google Scholar 

  • Keshner, E.A., Kenyon, R.V. (2000). The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. Journal of Vestibular Research, July, 1–12.

    Google Scholar 

  • Keshner, E., Kenyon, R.V. (2004). Using immersive technology for postural research and rehabilitation. Assisting Technology, 16(1), 54–62.

    Google Scholar 

  • Keshner, E., Kenyon, R., Langston, J. (2004). Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research, 14(4), 307–319.

    PubMed  Google Scholar 

  • Keshner, E., Kenyon, RV., Dhaher, YY., Streepey, JW. (2004). Employing a virtual environment in postural research and rehabilitation to reveal the impact of visual information. International conference on disability. Virtual Reality, and Associated Technologies. New College, Oxford, UK.

    Google Scholar 

  • Martin, J. N. (1991). Anatomy of the somatic sensory system. In E. R. Kendel, J. H. Schwartz & T. M. Jessell (Eds.), Principle of neuroscience. Appleton & Lange: Norwalk.

    Google Scholar 

  • Barlow, J. S. (1993). The Electroencephalogram: Its patterns and origins. Cambridge: MIT Press.

    Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Review, 70, 1–41.

    CAS  Google Scholar 

  • Pfurtscheller, G, & Lopes de Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization:basic principes. Clinical Neurophysiology, 110, 1842–1857.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, P. (2000). Toward a quantitative description of large scale neocortical dynamic function and EEG. Behavioral Brain Research, 23(3), 371–437.

    Article  CAS  Google Scholar 

  • Gevins, A. S., Morgan, N. H., & Bressler, S. L. (1987). Human neuroelectric patterns predict performance accuracy. Science, 235(4788), 580–585.

    PubMed  CAS  Google Scholar 

  • Smith, M., McEvoy, L., & Gevins, A. (1999). Neurophysiological indices of strategy developnelment and skill acquisition. Cognitive Brain Research, 7, 389–404.

    Article  PubMed  CAS  Google Scholar 

  • Slobounov, S., & Tutwiler, R., & Slobounova, E. (2000a). Human oscillatory activity within gamma-band (30–50 Hz) induced by visual recognition of non-stable postures. Cognitive Brain Research, 9, 292–392.

    Google Scholar 

  • Slobounov, S., Fukada, K., Simon, R., Rearick, M., Ray, W. (2000b). Neurophysiological and behavioral correlates of time pressure effects on performance in cognitive-motor tasks. Cognitive Brain Research, 9, 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, H., & Penfield, W. (1949). Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch.Psychiat. Vol.183, pp. 163–174.

    Article  Google Scholar 

  • Pfurtscheller, G. (1981). Central beta rhythm during sensory motor activities in man. EEG and Clinical Neurophysiology, 51, 253–264.

    Article  CAS  Google Scholar 

  • Sheer,. E. (1976). Focused arousal and 40 Hz-EEG. In R. M. Knight and D. J.Bakker (Eds.), The Neuropsychology of Leaning Disorders, (pp. 71–87). University Park Press, Baltimore.

    Google Scholar 

  • Basar, E., & Demiralp, T. (1995). Fast rhythms in the hippocampus are a part of the diffuse gamma response system. Hippocampus, 5, 240–241.

    Article  PubMed  CAS  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(3), 4240–4249.

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17(2), 722–734.

    PubMed  CAS  Google Scholar 

  • Slobounov, S., Tutwiler, R. Slobounova, E. (1998c). Perception of postural instability as revealed by wavelet transform. IEEE Signal Processing, 12(5), 234–238.

    Google Scholar 

  • Kornhuber, H. H., & Deecke, L. (1965). Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des Menschen. Bereitschaftspotential und reafferente Potential. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 284, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Kutas, M. & Donchin, E. (1974). Studies squeezing: The effects of handedness. The responding hand and response force on the contralateral dominance of readiness potential. Science 186, 545–548

    PubMed  CAS  Google Scholar 

  • Kristeva, R., Cheyne, D., Lang, W., Lindinger, G. & Deecke, L. (1990). Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. EEG and Clinical Neurophysiology, 74, 10–418.

    Google Scholar 

  • Cooper, R., McCallum, W. C., & Cornthwaite, S. P. (1989). Slow potential changes related to the velocity of target movement in a tracking task. EEG and Clinical Neurophysiology, 72, 232–239.

    Article  CAS  Google Scholar 

  • Lang, W., Zilch, O., Koska, C., Lindinger, G., & Deecke, L. (1989). Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Experimental Brain Research, 74, 99–104.

    Article  CAS  Google Scholar 

  • Slobounov, S. M., & Ray, W. (1998). Movement related brain potentials and task complexity. Experimental Brain Research, 13, 876–886

    Google Scholar 

  • Slobounov, S., Johnston, J., Chiang, H., & Ray, W. (2002a). The role of sub-maximal force production in the enslaving phenomenon. Brain Research, 954, 212–219.

    Article  PubMed  CAS  Google Scholar 

  • Slobounov, S, Johnston, J., Ray, W, Chiang, H. (2002b). Motor-related cortical potentials accompanying enslaving effect in single versus combination of fingers force production tasks. Clinical Neurophysiology, 113, 1444–1453.

    Article  PubMed  CAS  Google Scholar 

  • Slobounov, S., Chiang, H., Johnston, J., Ray, W. (2002c). Modulated cortical control of individual fingers in experienced musicians: an EEG study. Clinical Neurophysiology, 113, 2013–2024.

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi, M., & Hallett, M. (2003). The Bereitschaftpotential: Movement-related cortical potentials. Kluger Academic/Plenum Publishers. NY.

    Google Scholar 

  • Geets, W., & Louette, N (1985). Early EEG in 300 cerebral concussions. EEG and Clinical Neurophysiology, 14(4), 333–338.

    CAS  Google Scholar 

  • Tebano, T. M., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pessizi, G., & Ricci, G. F. (1988). EEG spectral analysis after minor head injury in man. EEG and Clinical Neurophysiology, 70, 185–189.

    Article  CAS  Google Scholar 

  • Montgomery, A., Fenton, G. W., McCLelland, R. J., MacFlyn, G., & Rutherford, W. H. (1991). The psychobiology of minor head injury. Psychological Medicine, 21, 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Pratar-Chand, R., Sinniah, M., & Salem, F. A. (1988). Cognitive evoked potential (P300): a metric for cerebral concussion. Acta Neurologia Scandinavia, 78, 185–189.

    Article  Google Scholar 

  • Watson, W. R., Fenton, R. J. McClelland, J., Lumbsden, J., Headley, ML, & Rutherford, W. H. (1995). The post-concussional state: Neurophysiological aspects. British Journal of Psychiatry, 167,514–521.

    PubMed  CAS  Google Scholar 

  • Thornton, K. E. (1999). Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32–64 Hz). Brain Injury, 13(7), 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Pointinger, H., Sarahrudi, K., Poeschl, G., Munk, P. (2002). Electroencephalography in primary diagnosis of mild head trauma. Brain Injury, 16(9), 799–805.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J., Sebastianelli, W., Slobounov, S. (2005). EEG and postural correlates of mild traumatic brain injury in athletes. Neuroscience Letters, 377, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Slobounov, S., Sebastianelli, W., Moss, R. (2005b). Alteration of posture-related cortical potentials in mild traumatic brain injury. Neuroscience Letters, 383, 251–255.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Slobounov, S., Sebastianelli, W. (2006). Introductory Chapter Concussion in Athletics: Ongoing Controversy. In: Slobounov, S., Sebastianelli, W. (eds) Foundations of Sport-Related Brain Injuries. Springer, Boston, MA . https://doi.org/10.1007/0-387-32565-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-32565-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32564-4

  • Online ISBN: 978-0-387-32565-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics