Advertisement

Model-Based Configuration Support For Software Product Families

  • Katharina Wolter
  • Lothar Hotz
  • Thorsten Krebs
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 87)

Abstract

In this paper, we present main aspects of the ConIPF methodology which can be used to derive customer-specific software products. The methodology is based on software product families and model-based configuration. First results from using the methodology in an industrial context are presented.

Key words

Product Derivation Software Product Families Application Engineering Model-based Configuration Software Configuration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, C., Bayer, J., and Muthig, D., 2000, Component-based Product Line Development: the KobrA Approach, Proceedings of 1 st International Software Product Line Conference. Pittsburg, USA.Google Scholar
  2. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and Debaud, J.M., 1999. PULSE: a Methodology to Develop Software Product Lines, Proceedings of the 5th Symposium on Software Reusability.Google Scholar
  3. Bayer, J., Gacek, C., Muthig, D., and Widen, T., 2000, PuLSE-I: deriving Instances from a Product Line Infrastructure. 7th IEEE International Conference and Workshop on the Engineering of Computer Based Systems, pp. 237–245. Edinburgh, Scotland.Google Scholar
  4. Bosch, J., Florijn, G., Greelhorst, D., Kuusela, J., Obbink, H., and Pohl, K., 2001, Variability Issues in Software Product Lines. Proceedings of the Fourth International Workshop on Product Family Engineering (PFE-4). Bilbao, Spain.Google Scholar
  5. Davis, S., 1987, Future Perfect. Addison-Wesley, Reading, Mass.Google Scholar
  6. Günter, A., 1995. Wissensbasiertes Konfigurieren, Infix, St. Augustin.Google Scholar
  7. Günter, A., and Hotz, L., 1999. KONWERK — A Domain Independent Configuration Tool, Proceedings of Configuration (AAAI 1999) Workshop, pp. 10–19. Orlando, Florida.Google Scholar
  8. Günter, A., and Kühn, C., 1999, Knowledge-based Configuration — Survey and Future Directions, Proceedings of XPS-99: Knowledge Based Systems. Würzburg, Germany.Google Scholar
  9. Günter, A., Hollmann, O., Ranze, K. C. and Wagner, T., 2001, Wissensbasierte Konfiguration von komplexen variantenreichen Produkten in internetbasierten Vertriebsszenarien. KI, 15(1): 33–36.Google Scholar
  10. Hein, A., MacGregor, J., and Thiel, S., 2001. Configuring Software Product Line Features. Proceedings of ECOOP 2001 — Workshop on Feature Interaction in Composed Systems, Budapest, Hungary.Google Scholar
  11. Hein, A., and MacGregor, J., 2003, Managing Variability with Configuration Techniques, Proceedings of the Workshop on Software Variability Mangement at the ICSE, Portland, Oregon, USA.Google Scholar
  12. Hollmann, O., Wagner, T., and Günter, A., 2000, EngCon: a flexible domain-independent Configuration Engine. Proceedings ECAI-Workshop Configuration, pp. 94–96.Google Scholar
  13. Hotz, L., Günter, A., and Krebs, T., 2003, A knowledge-based Product Derivation Process and some Ideas how to integrate Product Development (position paper), Proceedings of Software Variability Management Workshop, pp. 136–140, Groningen, The Netherlands.Google Scholar
  14. Hotz, L., Krebs, T., and Wolter, K. 2004, Dependency Analysis and its Use for Evolution Tasks, L. Hotz and T. Krebs (eds.), Proceedings of the Workshop on planning and configuration 2004 (PuK-2004), Hamburg, Germany.Google Scholar
  15. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., and MacGregor, J., 2005, Configuration in Industrial Product Families — The ConIPF Methodology. AKA-Verlag, Berlin, to appear.Google Scholar
  16. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S., 1990, Feature-oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Carnegic Mellon University, Pittsburgh, PA, USA.Google Scholar
  17. Kang, K., Lee, J., and Donohoe, P., 2002, Feature-oriented Product Line Engineering, IEEE Software 7/8: 58–65.CrossRefGoogle Scholar
  18. Kiezales, J., Bobrow, D. G., and des Rivieres, J., 1991, The Art of the Metaobject Protocol, MIT Press, Cambridge, MA.Google Scholar
  19. Krebs, T., Wolter, K., and Hotz, L., 2004a, Mass Customization for Evolving Product Families, Proceedings of International Conference on Economic, Technical and Organizational Aspects of Product Configuration Systems, pp. 79–86, Copenhagen, Denmark.Google Scholar
  20. Krebs, T., Hotz, L., and Wolter, K., 2004b, Pre-Packaged Variability for Product Derivation in Product Lines, Proceeding of Configuration — ECAI 2004 Workshop, pp. 31–33, Valencia, Spain.Google Scholar
  21. Krueger, Charles W., 2001, Software Mass Customization.Google Scholar
  22. O, Ying-Lie, 2002, Configuration for mass-customization and e-business, 15th European Conference on Artificial Intelligence, Configuration Workshop.Google Scholar
  23. Parnas, D.L., 1976, On the Design and Development of Program Families. IEEE Transactions on Software Engineering, Vol. SE2,1, March, pp. 1–9.Google Scholar
  24. Piller, F. T., 2003, What is mass customization, Mass customization news, 6(1): Retrieved March 21, 2005, http://www.mass-customization.de/news/news03_01.htm.Google Scholar
  25. Pure-Systems, 2003, Variant Management with pure::variants.Google Scholar
  26. Ranze, K., Scholz, T., Wagner, T., Günter, A., Herzog, O., Hollmann, O., Schlieder, C., and Arlt, V., 2000, A structure-based Configuration Tool: Drive Solution Designer DSD. 14. Conf. Innovative Applications of AI.Google Scholar
  27. SEI (Carnegie Mellon Software Engineering Institute). A Framework for Software Product Line Practice, Retrieved March 21, 2005, http://www.sci.cmu.edu/plp/framework.html.Google Scholar
  28. Soininen, T., Tiihonen, J., Männistö, T., and Sulonen, R., 1998, Towards a General Ontology of Configuration, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1998(12): 357–372, Cambridge University Press, USA.Google Scholar
  29. Thiel, S., Ferber, S., Fischer, T., Hein, A., and Schlick, M., 2001, A Case Study in Applying a Product Line Approach for Car Periphery Supervision Systems, Proceedings of In-Vehicle Software 2001 (SP-1587), pp. 43–55, Detroit, Michigan, USA.Google Scholar
  30. Weiss, D., and Lai, C.T.R., 1999, Software Product Line Engineering: A Family-based Software Development Process, Addison Wesley.Google Scholar
  31. Wolter, K., Krebs, T., Hotz, L., and Meijler, T.D., 2004, Knowledge-based Product Derivation Process, Proceedings of the IFIP 18th World Computer Congress TC12 First International Conference, on AI Applications and Innovations (AIAI2004/WCC2004), pp. 323–332, Toulouse, France.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Katharina Wolter
    • 1
  • Lothar Hotz
    • 2
  • Thorsten Krebs
    • 1
  1. 1.Universität HamburgHamburgGermany
  2. 2.HITeC e.V.Universität HamburgHamburgGermany

Personalised recommendations