Skip to main content

Numerical Simulation for the Mesoscale Deformation of Disordered Reinforced Elastomers

  • Chapter
Modeling of Soft Matter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 141))

Abstract

We study here the dynamical behavior of disordered elastic systems such as gels or filled elastomers, by dissipative molecular dynamics. We show that applied macroscopic deformations result in non-affine deformations at the scale of the filler particles. These non-affine deformations lead to slow meso-scale reorganizations, which could explain the long relaxation times measured in gels, and also in rubbers even at temperatures much above the glass transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alexander, Amorphous solids: their structure, lattice dynamics and elasticity, Physics Reports, 296 (1998), pp. 65–236.

    Google Scholar 

  2. J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980.

    Google Scholar 

  3. J.H. Weiner, Statistical Mechanics of Elasticity, Wiley, New York, 1983.

    MATH  Google Scholar 

  4. J. Bastide and L. Leibler, Large-Scale Heterogeneities in Randomly Cross-Linked Networks, Macromolecules, 21 (1988), pp. 2647–2649.

    Article  Google Scholar 

  5. J. Bastide, L. Leibler, and J. Prost, Scattering by Deformed Swollen Gels: Butterfly Isointensity Patterns, Macromolecules, 23(1990), pp. 1821–1825.

    Article  Google Scholar 

  6. M. Rubinstein, L. Leibler, and J. Bastide, Giant Fluctuations of Crosslink Positions in Gels, Phys. Rev. Lett., 68 (1992), pp. 405–407.

    Article  Google Scholar 

  7. C. Rouf, J. Bastide, J.M. Pujol, F. Schosseler, and J.P. Munch, Strain Effect on Quasistatic Fluctuations in a Polymer Gels, Phys. Rev. Lett., 73 (1994), pp. 830–833.

    Article  Google Scholar 

  8. A. Ramzi, F. Zielinski, J. Bastide, and F. Boué, Butterfly Patterns: Small-Angle Neutron Scattering from Deuterated Mobile Chains in a Randomy Cross-linked Polystyrene Network Macromolecules, 28 (1995), pp. 3570–3587.

    Article  Google Scholar 

  9. A. Ramzi, A. Hakiki, J. Bastide, and F. Boué, Uniaxial Extension of End-Linked Polystyrene Networks Containing Deuterated Free Chains Studied by Small-Angle Neutron Scattering: Effect of the Network Chains and the Size of the Free Chains, Macromolecules, 30 (1997), pp. 2963–2977.

    Article  Google Scholar 

  10. S. Westermann, W. Pyckout-hintzen, D. Richter, E. Straube, S. Egelhaaf, and R. May, On the length scale Dependence of Microscopic Strain by SANS, Macromolecules, 34 (2001), pp. 2186–2194.

    Article  Google Scholar 

  11. P.-G. de Gennes, On a relation between percolation theory and the elasticity of gels, J. Physique Lett., 37 (1976), pp. L1–L2.

    Article  Google Scholar 

  12. Stauffer D. and Aharony A., Introduction to percolation theory, Taylor and Francis, London, 1994.

    Google Scholar 

  13. S. Feng and P.N. Sen, Percolation on Elastic Networks: New Exponent and Threshold, Phys. Rev. Lett., 52 (1984), pp. 216–219.

    Article  Google Scholar 

  14. S. Arbabi and M. Sahimi, Critical Properties of Viscoelasticity of Gels and Elastic Percolation Networks, Phys. Rev. Lett., 65 (1990), pp. 725–728.

    Article  Google Scholar 

  15. A. A. Gusev, Finite Element Mapping for Spring Network Representations of the Mechanics of Solids, Phys. Rev. Lett., 93 (2004), pp. 0304302–4.

    Article  Google Scholar 

  16. W. Schirmacher, G. Diezemann, and C. Ganter, Harmonic Vibrational Excitations in Disordered Solids and the “Boson Peak”, Phys. Rev. Lett., 81 (1998), pp. 136–139.

    Article  Google Scholar 

  17. A.A. Rzepiela, J.H.J. van Opheusden, and T. van Vliet, Large shear deformation of particle gels studied by Brownian Dynamics simulations, Computer Physics Communications, 147 (2002), pp. 303–306.

    Article  MATH  Google Scholar 

  18. J.P. Wittmer, A. Tanguy, J.-L. Barrat, and L. Lewis, Vibrations of amorphous, nanometric structures: When does continuum theory apply?, Europhysics Letters, 57 (2002), pp. 423–429.

    Article  Google Scholar 

  19. A. Tanguy, J.P. Wittmer, F. Leonforte, and J.-L. Barrat, Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations, Phys. Rev. B, 66 (2002), pp. 174205–17.

    Article  Google Scholar 

  20. J. Gao and J.H. Weiner, Excluded-Volume Effects in Rubber Elasticity. 1. Virial Stress Formulation, Macromolecules, 20 (1987), pp. 2520–2525.

    Article  Google Scholar 

  21. J. Gao and J. H. Weiner, Excluded-Volume Effects in Rubber Elasticity. 2. Ideal Chain Assumption, Macromolecules, 20 (1987), pp. 2525–2531.

    Article  Google Scholar 

  22. C.P. Lusignan, T.H. Mourey, J.C. Wilson, and R.H. Colby, Viscoleasticity of randomly branched polymers in the vulcanization class, Phys. Rev. E, 60 (1999), pp. 5657–5669.

    Article  Google Scholar 

  23. E. Gasilova, L. Benyahia, D. Durand, and T. Nicolai, Influence of entanglements on the Viscoleastic Relaxation of Polyurethane Melts and Gels, Macromolecules, 35 (2002), pp. 141–150.

    Article  Google Scholar 

  24. M. Pütz, K. Kremer, and R. Everaers, Self-Similar Chain Conformation in Polymer Gels, Phys. Rev. Lett., 84 (2000), pp. 298–301.

    Article  Google Scholar 

  25. J. Oberdisse, G. Ianniruberto, F. Greco, and G. Marrucci, Primitive-chain Brownian simulations of entangled rubbers, Europhysics Letters, 58 (2002), pp. 530–536.

    Article  Google Scholar 

  26. E.S. Matsuo, M. Orkisz, S.-T. Sun, Y. Li, and T. Tanaka, Origin of Structural Inhomogeneities in Polymer Gels, Macromolecules, 27 (1994), pp. 6791–6796.

    Article  Google Scholar 

  27. S. Panyukov and Y. Rabin, Polymer Gels: Frozen Inhomogeneities and Density Fluctuations, Macromolecules, 29 (1996), pp. 7960–7975.

    Article  Google Scholar 

  28. C. Rouf-George, J.P. Munch, G. Beinert, F. Isel, A. Pouchelon, J.F. Palierne, F. Boué, and J. Bastide, About “Defects” in Networks made by End-Linking, Polymer Gels and Networks, 4 (1996), pp. 435–450.

    Article  Google Scholar 

  29. L.E. Nielsen and R.F. Landel, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, 1994.

    Google Scholar 

  30. A.I. Medalia, Effect of carbon black on dynamic properties of rubber vulcanizates, Rubber Chem. Tech., 51 (1978), pp. 437–523.

    Google Scholar 

  31. D.C. Edwards, Review. Polymer-filler interactions in rubber reinforcement, J. Mater. Sci. 25 (1990), 4175–4185.

    Article  Google Scholar 

  32. A.R. Payne, A Note on the Conductivity and Modulus of Carbon Black-Loaded Rubbers, J. Appl. Polym. Sci., 9 (1965), pp. 1073–1082.

    Article  Google Scholar 

  33. J.A.C. Harwood, L. Mullins, and A.R. Payne, Stress Softening Effects in Pure Gum and Filler Loaded Rubbers., J. Appl. Polym. Sci., 9 (1965), pp. 3011–3021.

    Article  Google Scholar 

  34. G. Kraus, Reinforcement of elastomers by carbon black, Rubber Chem. Tech., 51 (1978), pp. 297–321.

    Google Scholar 

  35. G. Kraus, Mechanical Losses in Carbon-Black-Filled Rubbers, J. Appl. Polym. Sci. Appl. Polym. Symp., 39 (1984), pp. 75–92.

    Google Scholar 

  36. D.W. Schaefer, T. Rieker, M. Agamalian, J.S. Lin, D. Fischer, S. Sukumaran, C. Chen, G. Beaucage, C. Herd, and J. Ivie, Multilevel structure of reinforcing silica and carbon, J. Appl. Cryst., 33 (2000), pp. 587–591.

    Article  Google Scholar 

  37. S. Westermann, M. Kreitschmann, W. Pyckout-Hintzen, D. Richter, E. Straube, B. Farago, and G. Goerigk, Matrix Chain Deformation in Reinforced Networks: a SANS Approach, Macromolecules, 32 (1999), pp. 5793–5802.

    Article  Google Scholar 

  38. J. Berriot, H. Monts, F. Lequeux, D. Long, and P. Sotta, Evidence for the shift of the glass transition near the particles in silica-filled elastomers, Macromolecules, 35 (2002), pp. 9756–9762.

    Article  Google Scholar 

  39. J. Berriot, H. Monts, F. Lequeux, D. Long, and P. Sotta, Gradient of glass transition temperature in filled elastomers, Europhys. Lett., 64 (2003), pp. 50–56.

    Article  Google Scholar 

  40. L.C.E. Struik, The mechanical and physical aging of semicrystalline polymers: 1., Polymer, 28 (1987), pp. 1521–1533.

    Article  Google Scholar 

  41. D. Long and F. Lequeux, Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films, EPJ E, 4 (2001), pp. 371–387.

    Google Scholar 

  42. Y. Kantor and I. Webman, Elastic Properties of Random Percolating Systems, Phys. Rev. Lett., 52 (1984), pp. 1891–1894.

    Article  Google Scholar 

  43. M. Kellomki, J. Aström and J. Timonen, Rigidity and Dynamics of Random Spring Networks, Phys. Rev. Lett., 77 (1996), pp. 2730–2733.

    Article  Google Scholar 

  44. M. Kellomki, J. Alström, and J. Timonen, Rigidity and Dynamics of Random Spring Networks, Phys. Rev. Lett., 77 (1996), pp. 2730–2733.

    Article  Google Scholar 

  45. C. Moukarzel, P.M. Duxbury, and P.L. Leath, Infinite-Cluster Geometry in Central-Force Networks, Phys. Rev. Lett., 78 (1997), pp. 1480–1483.

    Article  Google Scholar 

  46. C. Moukarzel and P.M. Duxbury, Comparison of rigidity and connectivity percolation in two dimensions, Phys. Rev. E, 59 (1999), pp. 2614–2622.

    Article  Google Scholar 

  47. O. Farago and Y. Kantor, Entropic Elasticity of Two-Dimensional Self-Avoiding Percolation Systems, Phys. Rev. Lett., 85 (2000), pp. 2533–2537.

    Article  Google Scholar 

  48. O. Farago and Y. Kantor, Entropic elasticity of phantom percolation networks, Europhys. Lett., 52 (2000), pp. 413–419.

    Article  Google Scholar 

  49. M. Latva-Kokko, J. Mäkinen, and J. Timonen, Rigidity transition in two-dimensional random fiber networks, Phys. Rev. E, 63 (2001), Art. No. 046113.

    Google Scholar 

  50. O. Farago and Y. Kantor, Entropic elasticity at the sol-gel transition, Europhys. Lett., 57 (2002), pp. 458–463.

    Article  Google Scholar 

  51. M. Doi and S.F. Edwards, The Theory of Polymers Dynamics Clarendon Press, Oxford, 1986.

    Google Scholar 

  52. J.G. Curro and P. Pincus, A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit, Macromolecules, 16 (1983), pp. 559–562.

    Article  Google Scholar 

  53. L.D. Landau and E.M. Lifshitz, Elasticity, Pergamon Press, New York, 1993.

    Google Scholar 

  54. L.D. Landau and E.M. Lifshitz, Mechanics, Pergamon Press, New York, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Long, D., Sotta, P. (2005). Numerical Simulation for the Mesoscale Deformation of Disordered Reinforced Elastomers. In: Calderer, MC.T., Terentjev, E.M. (eds) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol 141. Springer, New York, NY. https://doi.org/10.1007/0-387-32153-5_9

Download citation

Publish with us

Policies and ethics