Skip to main content

Non-Newtonian Constitutive Equations Using the Orientational Order Parameter

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 141))

Abstract

Nonlinear hydrodynamic equations for non-Newtonian fluids are discussed. We start from the recently derived hydrodynamic-like nonlinear description of a slowly relaxing orientational order parameter tensor. The reversible quadratic nonlinearities in this tensor’s dynamics are material dependent due to the generalized nonlinear flow alignment effect that comes in addition to the material independent corotational convected derivative. In the entropy production these terms are balanced by linear and nonlinear orientational-elastic contributions to the stress tensor. These can be used to get a nonlinear dynamic equation for the stress tensor (sometimes called constitutive equation) in terms of a power series in the variables. A comparison with existing phenomenological models is given. In particular we discuss how these ad-hoc models fit into the hydrodynamic description and where the various non-Newtonian contributions are coming from. We also discuss the connection to the hydrodynamic-like description of non-Newtonian effects that employs a relaxing strain tensor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.B. Callen, Thermodynamics, John Wiley, New York, 2nd ed., 1985.

    MATH  Google Scholar 

  2. L.E. Reichl, A Modern Course in Statistical Physics, Texas University Press, Austin, 1980.

    Google Scholar 

  3. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Benjamin, Reading, Mass., 1975.

    Google Scholar 

  4. P.C. Martin, O. Parodi, and P.S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev. A, 6 (1972), pp. 2401–2420.

    Article  Google Scholar 

  5. H. Pleiner and H.R. Brand, Hydrodynamics and Electrohydrodynamics of Nematic Liquid Crystals, in Pattern Formation in Liquid Crystals, A. Buka and L. Kramer (eds.), Springer, New York, (1996), pp. 15–67.

    Google Scholar 

  6. I.M. Khalatnikov, Introduction to the Theory of Superfluidity, Benjamin, New York, 1965.

    Google Scholar 

  7. M. Liu, Hydrodynamic theory near the nematic — smectic A transition, Phys. Rev. A 19 (1979), pp. 2090–2094.

    Article  Google Scholar 

  8. H.-W. Müller and M. Liu, Shear Excited Sound in Magnetic Fluid, Phys. Rev. Lett. 89 (2002), no. 67201.

    Google Scholar 

  9. E. Jarkova, H. Pleiner, H.-W. Müller, and H.R. BrandMacroscopic Dynamics of Ferronematics, J. Chem. Phys. 118 (2003), pp. 2422–2430.

    Article  Google Scholar 

  10. H. Pleiner and J.L. Harden, General Nonlinear 2-Fluid Hydrodynamics of Complex Fluids and Soft Matter, Nonlinear Problems of Continuum Mechanics, Special issue of Notices of Universities. South of Russia. Natural sciences (2003), pp. 46–61 and AIP Conference Proceedings 708 (2004), pp. 46–51.

    Google Scholar 

  11. J.G. Oldroyd, On the formulation of equations of state, Proc. Roy. Soc. A 200 (1950), pp. 523–541 and The hydrodynamics of materials whose rheological properties are complicated, Rheol. Acta 1 (1961), pp. 337–344.

    Article  MathSciNet  Google Scholar 

  12. B.D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys. 33 (1961), pp. 239–249.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Truesdell and W. Noll, The non-linear field theories of mechanics, Springer, Berlin/New York, 1965.

    Google Scholar 

  14. H. Giesekus, Die Elastizität von Flüssigkeiten, Rheol. Acta 5 (1966), pp. 29–35 and A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newt. Fluid Mech. 11 (1982), pp. 69–109.

    Article  Google Scholar 

  15. R.B. Bird, R.C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, John Wiley & Sons, New York, 1977.

    Google Scholar 

  16. M.W. Johnson and D. Segalman, Model for viscoelastic flow behavior which allows non-affine deformation, J. Non-Newt. Fluid Mech. 2 (1977), pp. 255–270 and J. Rheol. 22 (1978), pp. 445–446.

    Article  MATH  Google Scholar 

  17. R.G. Larson, Constitutive equations for polymer melts and solutions, Butterworths, Boston, 1988.

    Google Scholar 

  18. H. Temmen, H. Pleiner, M. Liu, and H.R. Brand, Convective Nonlinearity in Non-Newtonian Fluids, Phys. Rev. Lett. 84 (2000), pp. 3228–3231 and 86 (2001), p. 745.

    Article  Google Scholar 

  19. H. Pleiner, M. Liu, and H.R. Brand, “The Structure of Convective Nonlinearities in Polymer Rheology, Rheol. Acta 39 (2000), pp. 560–565.

    Article  Google Scholar 

  20. M. Grmela, Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures, Phys. Lett. A 296 (2002), pp. 97–104.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Pleiner, M. Liu, and H.R. Brand, Nonlinear Fluid Dynamics Description of non-Newtonian Fluids, Rheol. Acta 43 (2004), pp. 502–508 and A physicists’ view on constitutive equations, Proc. XIVth Intern. Congress on Rheology, Seoul 2004, pp. 168–170.

    Article  Google Scholar 

  22. M. Doi and S.F. Edwards, The theory of polymer dynamics, Clarendon Press Oxford, 1986.

    Google Scholar 

  23. P.G. de Gennes and J. Prost, The physics of liquid crystals, Clarendon Press Oxford, 1993.

    Google Scholar 

  24. M. Grmela, Bracket formulation of dissipative fluid-mechanics equations, Phys. Lett. A 102 (1984), pp. 355–358.

    Article  MathSciNet  Google Scholar 

  25. S. Hess, Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. I. Derivation of nonlinear constitutive laws, relaxation of the alignment, phase transition, Z. Naturforsch. 30a (1975), pp. 728–738.

    Google Scholar 

  26. S. Hess, Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. II. Viscous flow and flow alignment in the isotropic (stable and metastable) and nematic phases, Z. Naturforsch. 30a (1975), pp. 1224–1232.

    Google Scholar 

  27. P.D. Olmsted and P.M. Goldbart, Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behavior, Phys. Rev. A 46 (1992), pp. 4966–4993.

    Article  Google Scholar 

  28. A.N. Beris and B.J. Edwards, Thermodynamics of flowing systems with internal microstructure, University Press, Oxford (1994).

    Google Scholar 

  29. A.M. Sonnet, P.L. Maffetone, and E.G. Virga, Continuum theory for nematic liquid crystals with tensorial order, J. Non-Newt. Fluid Mech. 119 (2004), pp. 51–59.

    Article  MATH  Google Scholar 

  30. H. Pleiner, M. Llu, and H.R. Brand, Convective Nonlinearities for the Orientational Tensor Order Parameter in Polymeric Systems, Rheol. Acta 41 (2002), pp. 375–382.

    Article  Google Scholar 

  31. M. Grmela, Stress tensor in generalized hydrodynamics, Phys. Lett. A 111 (1985), pp. 41–44.

    Article  MathSciNet  Google Scholar 

  32. S.R. deGroot and P. Mazur, Nonequilibrium Thermodynamics, 2nd ed., Dover, New York, 1984.

    Google Scholar 

  33. H. Pleiner and H.R. Brand, Incompressibility Conditions in Liquid Crystals, Continuum Mech. Thermodyn. 14 (2002), pp. 297–306.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastoviscous liquids, Proc. Roy. Soc. A 245 (1958), pp. 278–297.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pleiner, H., Liu, M., Brand, H.R. (2005). Non-Newtonian Constitutive Equations Using the Orientational Order Parameter. In: Calderer, MC.T., Terentjev, E.M. (eds) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol 141. Springer, New York, NY. https://doi.org/10.1007/0-387-32153-5_4

Download citation

Publish with us

Policies and ethics