Skip to main content

Stress Transmission and Isostatic States of Non-Rigid Particulate Systems

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 141))

Abstract

The isostaticity theory for stress transmission in macroscopic planar particulate assemblies is extended here to non-rigid particles. It is shown that, provided that the mean coordination number in d dimensions is d + 1, macroscopic systems can be mapped onto equivalent assemblies of perfectly rigid particles that support the same stress field. The error in the stress field that the compliance introduces for finite systems is shown to decay with size as a power law. This leads to the conclusion that the isostatic state is not limited to infinitely rigid particles both in two and in three dimensions, and paves the way to an application of isostaticity theory to more general systems.

I am grateful to Prof. Robin Ball for critical comments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M Jaeger, S.R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys. 68 (1996), p. 1259.

    Article  Google Scholar 

  2. P.G. de Gennes, Granular matter: a tentative view, Rev. Mod. Phys. 71 (1999), S379.

    Article  Google Scholar 

  3. C. Liu, S. R. Nagel, D. A. Schecter, S.N. Coppersmith, S. Majumdar, O. Narayan, and T. A. Witten, Force fluctuations in bead packs, Science 269, (1995), p. 513 and references within.

    Article  Google Scholar 

  4. T. Wakabayashi, Photoelastic method for determination of stress in powdered mass, Proc. 7th Jpn. Nat. Cong. Appl. Mech. (1957), p. 153.

    Google Scholar 

  5. P. Dantu, Contribution à V’Étude Mécanique et Géométrique des Milieux Pulvérulents, Proc. 4th Int. Conf. Soil Mech. and Found. Eng. (1957), p. 144.

    Google Scholar 

  6. D. Howell and R. P. Behringer, Fluctuations and dynamics for a two-dimensional sheared granular material, in Powders and Grains97, eds. R.P. Behringer and J.T. Jenkins (Rotterdam: balkema, 1997), p. 337.

    Google Scholar 

  7. L. Vanel, D. Howell, D. Clark, R.P. Behringer, and E. Clement, Memories in sand: Experimental tests of construction history on stress distributions under sandpiles, Phys. Rev. E 60 (1999), R5040.

    Google Scholar 

  8. D.F. Bagster and R. Kirk, Computer generation of a model to simulate granular material behaviour, J. Powder Bulk Solids Technol. 1, (1985), p. 19.

    Google Scholar 

  9. K. Liffman, D.Y. Chan, and B. D. Hughes, Force distribution in a two dimensional sandpile, Powder Technol. 72 (1992), p. 225.

    Google Scholar 

  10. J.R. Melrose and R. C. Ball, The pathological behavior of sheared hard spheres with hydrodynamic interactions, Europhys. Lett. 32 (1995), p. 535.

    Article  Google Scholar 

  11. C. Thornton, Force transmission in granular media Kona Powder and Particle 15 (1997), p. 81.

    Google Scholar 

  12. S.F. Edwards and R. B. S. Oakeshott, The transmission of stress in an aggregate, Physica D38 (1989), p. 88.

    MathSciNet  Google Scholar 

  13. F.H. Hummel and E.J. Finnan, The distribution of pressure on surfaces supporting a mass of granular material, Proc. Inst. Civil Eng. 212 (1920), p. 369.

    Google Scholar 

  14. T. Jotaki and R. Moriyama, On the bottom pressure distribution of the bulk material piled with the angle of repose, J. Soc. Powder Technol. Jpn. 60 (1979), p. 184.

    Google Scholar 

  15. J. Smid, and J. Novosad, Pressure distribution under heaped bulk solids, Proc. of 1981 Powtech Conf., Ind. Chem. Eng. Symp. 63D3/V (1981), p. 1.

    Google Scholar 

  16. R.C. Ball, The propagation of stress through static powders, in Structures and dynamics of materials in the mesoscopic domain, eds. M. Lai, R.A. Mashelkar, B.D. Kulkarni, and V.M. Naik (Imperial College Press, London 1999).

    Google Scholar 

  17. R.C. Ball and D. V. Grinev, The Stress Transmission Universality Classes of Periodic Granular Arrays, cond-mat/9810124.

    Google Scholar 

  18. S.F. Edwards and D.V. Grinev, Statistical mechanics of stress transmission in disordered granular arrays, Phys. Rev. Lett. 82 (1999), p. 5397.

    Article  Google Scholar 

  19. R. Blumenfeld, S.F. Edwards, and R.C. Ball, Granular matter and the marginally rigid state, cond-mat/0105348.

    Google Scholar 

  20. J.P. Wittmer, P. Claudin, M. E. Cates, and J.-P. Bouchaud, A new approach to stress propagation in sandpiles and silos. Nature 382 (1996), p. 336.

    Article  Google Scholar 

  21. J.P. Wittmer, P. Claudin, and M. E. Cates, Stress propagation and arching in static sandpiles, J. Phys. I (France) 7 (1997), p. 39.

    Article  Google Scholar 

  22. M.E. Cates, J.P. Wittmer, J.-P. Bouchaud, and P. Claudin, Jamming, force chains, and fragile matter, Phys. Rev. Lett. 81 (1998), p. 1841.

    Article  Google Scholar 

  23. A.V. Tkachenko and T.A. Witten, Stress propagation through frictionless granular material, Phys. Rev. E 60 (1999), p. 687.

    Article  Google Scholar 

  24. R.C. Ball and R. Blumenfeld, Stress field in granular systems: Loop forces and potential formulation, Phys. Rev. Lett. 88 (2002), p. 115505.

    Article  Google Scholar 

  25. R. Blumenfeld, Stresses in isostatic granular systems and emergence of force chains, Phys. Rev. Lett. 93 (2004), p. 108301.

    Article  Google Scholar 

  26. A typical grain size is defined here for convenience only; there is no loss of generality and the discussion is equally valid for packings of particles with any distribution of grain sizes.

    Google Scholar 

  27. The extension of the analysis presented here to packings of particles of different materials is straightforward.

    Google Scholar 

  28. It should be noted that for finite systems it is always possible to find a finite small force F y that satisfies this criterion. However, the magnitude of this force decreases with system size.

    Google Scholar 

  29. Without loss of generality, the packing is presumed to experience no body forces.

    Google Scholar 

  30. R. Blumenfeld, Stress in planar cellular solids and isostatic granular assemblies: Coarse-graining the constitutive equation Physica A 336 (2004), p. 361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Blumenfeld, R. (2005). Stress Transmission and Isostatic States of Non-Rigid Particulate Systems. In: Calderer, MC.T., Terentjev, E.M. (eds) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol 141. Springer, New York, NY. https://doi.org/10.1007/0-387-32153-5_10

Download citation

Publish with us

Policies and ethics