Skip to main content

An Energetic Variational Formulation with Phase Field Methods for Interfacial Dynamics of Complex Fluids: Advantages and Challenges

  • Chapter
Modeling of Soft Matter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 141))

Abstract

The use of a phase field to describe interfacial phenomena has a long and fruitful tradition. There are two key ingredients to the method: the transformation of Lagrangian description of geometric motions to Eulerian description framework, and the employment of the energetic variational procedure to derive the coupled systems. Several groups have used this theoretical framework to approximate Navier-Stokes systems for two-phase flows. Recently, we have adapted the method to simulate interfacial dynamics in blends of microstructured complex fluids. This review has two objectives. The first is to give a more or less self-contained exposition of the method. We will briefly review the literature, present the governing equations and discuss a suitable numerical schemes, such as spectral methods. The second objective is to elucidate the subtleties of the model that need to be handled properly for certain applications. These points, rarely discussed in the literature, are essential for a realistic representation of the physics and a successful numerical implementation. The advantages and limitations of the method will be illustrated by numerical examples. We hope that this review will encourage readers whose applications may potentially benefit from a similar approach to explore it further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford, New York,1999.

    Google Scholar 

  2. J.L. West. Polymer-dispersed liquid crystals. In R.A. Weiss and C.K. Ober, editors, Liquid-Crystalline Polymers, R.A. Weiss and C.K. Ober editors, Volume 435 of ACS Symp. Ser., Chapter 32, pp. 475–495. ACS, Washington, D.C., 1990.

    Google Scholar 

  3. C.L. Tucker and P. Moldenaers. Microstructural evolution in polymer blends. Ann. Rev. Fluid Mech., 34:177–210, 2002.

    Article  MathSciNet  Google Scholar 

  4. J.A. Sethian and P. Smereka. Level set methods for fluid interfaces. Ann. Rev, Fluid Mech, 35:341–372, 2003.

    Article  MathSciNet  Google Scholar 

  5. J. Feng, G. Sgalari, and L.G. Leal. A theory for flowing nematic polymers with orientational distortion, J. Rheoi, 44:1085–1101, 2000.

    Article  Google Scholar 

  6. V. Cristini, J. Blawzdziewicz, and M. Loewenberg. Drop breakup in three-dimensional viscous flows. Phys. Fluids, 10:1781–1783, 1998.

    Article  Google Scholar 

  7. E.M. Toose, B.J. Geurts, and J.G.M. Kuerten. A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow. J. Non-Newtonian Fluid Mech., 60:129–154, 1995.

    Article  Google Scholar 

  8. R.E. Khayat. Three-dimensional boundary-element analysis of drop deformation for Newtonian and viscoelastic systems. Int. J. Num. Meth. Fluids, 34:241–275, 2000.

    Article  MATH  Google Scholar 

  9. H.H. Hu, N.A. Patankar, and M.Y. Zhu. Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian-eulerian technique. J. Comput. Phys., 169:427–462, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Ambravaneswaran, E.D. Wilkes, and O.A. Basaran. Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids, 14:2606–2621, 2002.

    Article  MathSciNet  Google Scholar 

  11. R.W. Hooper, V.F. de Almeida, C.W. Macosko, and J.J. Derby. Transient polymeric drop extension and retraction in uniaxial extensional flows. J. Non-Newtonian Fluid Mech., 98:141–168, 2001.

    Article  MATH  Google Scholar 

  12. S. Ramaswamy and L.G. Leal. The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid. J. Non-Newtonian Fluid Mech., 85:127–163, 1999.

    Article  MATH  Google Scholar 

  13. S. Ramaswamy and L.G. Leal. The deformation of a Newtonian drop in the uniaxial extensional flow of a viscoelastic liquid. J. Non-Newtonian Fluid Mech., 88:149–172, 1999.

    Article  MATH  Google Scholar 

  14. J. Li and Y. Renardy. Numerical study of flows of two immiscible liquids at low Reynolds number. SIAM Review, 42:417–439, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Renardy, M. Renardy, T. Chinyoka, D.B. Khismatullin, and J. Li. A viscoelastic vof-prost code for the study of drop deformation. Proc. 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, ASME, HTFED2004-56114, 2004.

    Google Scholar 

  16. J. Glimm, C. Klingenberg, O. McBryan, B. Plohr, D. Sharp, and S. Yaniv. Front tracking and two-dimensional Riemann problems. Adv. Appl. Math., 6:259–290, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  17. S.O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput Phys., 100:25–37, 1992.

    Article  MATH  Google Scholar 

  18. Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher. A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys., 124:449–464, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.A. Sethian. Level Set Methods and Fast Marching Methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edition. Cambridge University Press, New York, 1999.

    MATH  Google Scholar 

  20. S. Osher and R. Fedkiw. Level set methods: An overview and some recent results. J. Comput. Phys., 169:463–502, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. Roy. Soc. Lond. A, 454:2617–2654, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.D. van der Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Verhandel Konink. Akad. Weten. Amsterdam, (Sect. 1), 1:1–56, 1892.

    Google Scholar 

  23. J.D. van der Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, translation by j. s. rowlingson. J. Statist. Phys, 20:197–244, 1979.

    Article  MathSciNet  Google Scholar 

  24. J. Dunn and J. Serrin. On the thermomechanics of interstitial working. Arch. Rational Mech. Anal., 88(2):95–133, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Joseph. Fluid dynamics of two miscible liquids with diffusion and gradient stresses. European J. Mech. B Fluids, 9(6):565–596, 1990.

    MathSciNet  Google Scholar 

  26. P.C. Hohenberg and B.I. Halperin. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49:435–479, 1977.

    Article  Google Scholar 

  27. A.J. Bray. Theory of phase-ording kinetics. Advances in Physics, 51(2):481–587, 2002.

    Article  MathSciNet  Google Scholar 

  28. J.A. Warren and W.J. Boettinger. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall. Mater., 43:689–703, 1995.

    Article  Google Scholar 

  29. A. Karma. Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett., 87:115701, 2001.

    Article  Google Scholar 

  30. C.I. Poser and I.C. Sanchez. Interfacial tension theory of low and high molecular weight liquid mixtures. Macromolecules, 14:361–370, 1981.

    Article  Google Scholar 

  31. J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid. J. Chem. Phys., 31:688–699, 1959.

    Article  Google Scholar 

  32. A.M. Lapena, S.C. Glotzer, S.A. Langer, and A.J. Liu. Effect of ordering on spinodal decomposition of liquid-crystal/polymer mixtures. Phys. Rev. E, 60:R29–R32, 1999.

    Article  Google Scholar 

  33. D.M. Anderson, G.B. McFadden, and A.A. Wheeler. Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech., 30:139–165, 1998.

    Article  MathSciNet  Google Scholar 

  34. D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modelling. J. Comput. Phys., 155:96–127, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Verschueren, F.N. van de Vosse, and H.E.H. Meijer, Diffuse-interface modelling of thermocapillary flow instabilities in a hele-shaw cell. J. Fluid Mech., 434:153–166, 2001.

    Article  MATH  Google Scholar 

  36. V.E. Badalassi, H.D. Ceniceros, and S. Banerjee. Computation of multiphase systems with phase field model. J. Comput. Phys., 190:371–397, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  37. C. Liu and J. Shen. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D, 179:211–228, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  38. F. Boyer. A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids, 31:41–68, 2002.

    Article  MathSciNet  Google Scholar 

  39. T. Qian, X.-P. Wang, and P. Sheng. Generalized navier boundary condition for the moving contact line. Commun. Math. Sci., 1(2):333–341, 2003.

    MATH  MathSciNet  Google Scholar 

  40. M. Gurtin, D. Polignone, and J. Vinals. Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci., 6(6):815–831, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Yue, J.J. Feng, C. Liu, and J. Shen. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech., 515:293–317, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  42. P. Yue, J.J. Feng, C. Liu, and J. Shen. Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. X Non-Newtonian Fluid Mech., accepted, 2005.

    Google Scholar 

  43. P. Yue, J.J. Feng, C. Liu, and J. Shen. Interfacial force and Marangoni flow on a nematic drop retracting in an isotropic fluid. J. Colloid Interface Sci., accepted, 2005.

    Google Scholar 

  44. P. Yue, J.J. Feng, C. Liu, and J. Shen. Viscoelastic effects on drop deformation in steady shear. J. Fluid Mech., submitted, 2004.

    Google Scholar 

  45. P. Yue, J.J. Feng, C. Liu, and J. Shen. Transient drop deformation upon startup of shestr in viscoelastic fluids. Phys. Fluids, submitte, 2005.

    Google Scholar 

  46. P. Yue, J.J. Feng, C. Liu, and J. Shen. Heart-shaped bubbles rising in a nematic fluid, in preparation, 2005.

    Google Scholar 

  47. S.R. de Groot and P. Mazur. Nonequilibrium Thermodynamics. North Holland, 1962.

    Google Scholar 

  48. C. Liu, J. Shen, J.J. Feng, and P. Yue. Variational approach in two-phase flows of complex fluids: transport and induced elastic stress. In A. Miranville, editor, Mathematical Models and Methods in Phase TVansitions,. Nova Publications, 2005.

    Google Scholar 

  49. C. Liu and N.J. Walkington. An eulerian description of fluids containing viscoelastic particles. Arch. Ration. Mech. Anal, 159(3):229–252, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  50. P.G. de Gennes and J. Prost. The Physics of Liquid Crystals. Oxford, New York, 1993.

    Google Scholar 

  51. C. Liu and N.J. Walkington. Approximation of liquid crystal flows. SIAM J. Numer. Anal., 37:725–741, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Rapini and M. Popoular. Distortion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois. J. Phys. (Paris) C, 30:54–56, 1969.

    Google Scholar 

  53. C. Liu and J. Shen. On liquid crystal flows with free-slip boundary conditions. Dis. Cont. Dyn. Sys., 7:307–318, 2001.

    MATH  MathSciNet  Google Scholar 

  54. J. Shen. Efficient spectral-Galerkin method. II. direct solvers of second and fourth order equations by using Chebyshev polynomials. SIAM J. Sci. Comput, 16:74–87, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  55. J.L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Comput Methods Appl. Mech. Eng., submitted, 2005.

    Google Scholar 

  56. J.L. Guermond and J. Shen. A class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys., 192:262–276, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Shen. Efficient spectral-Galerkin method. I. direct solvers of second and fourth order equations by using Legendre polynomials. SI AM J. Sci. Comput., 15:1489–1505, 1994.

    Article  MATH  Google Scholar 

  58. J. Shen. Efficient spectral-Galerkin method. III. polar and cylindrical geometries. SIAM J. Sci. Comput, 18:1583–160, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  59. X. Zhang, R.S. Padgett, and O.A. Basaran. Nonlinear deformation and breakup of stretching liquid bridges. J. Fluid Mech., 329:207–245, 1996.

    Article  MATH  Google Scholar 

  60. M.R. Nobari, Y.-J. Jan, and G. Tryggvason. Head-on collision of drops—a numerical investigation. Phys. Fluids, 8:29–42, 1996.

    Article  MATH  Google Scholar 

  61. A.N. Zdravkov, G.W.M. Peters, and H.E.H. Meijer. Film drainage between two captive drops: PEO-water in silicon oil. J. Colloid Interface Sci., 266:195–201, 2003.

    Article  Google Scholar 

  62. A. Bhakta and E. Ruckenstein. Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci., 70:1–124, 1997.

    Article  Google Scholar 

  63. L.M. Pismen. Nonlocal diffuse interface theory of thin films and the moving contact line. Phys. Rev. E, 64:021603, 2001.

    Article  Google Scholar 

  64. R.B. Bird, D.F. Curtiss, R.C. Armstrong, and O. Hassager. Dynamics of PolymericLiquids, Vol. 2. Kinetic Theory. Wiley, New York, 1987.

    Google Scholar 

  65. G. Marrucci and F. Greco. The elastic constants of Maier-Saupe rodlike molecule nematics. Mol Cryst. Liq. Cryst., 206:17–30, 1991.

    Article  Google Scholar 

  66. F.H. Lin and C. Liu. Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math., 48:501–537, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  67. F.H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system. Arch. Rat. Mech. Anal, 154:135–156, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  68. X. Yang, J.J. Feng, C. Liu, and J. Shen. Contraction and pinch-off phenomena of a liquid filament. J. Comput. Phys., submitted, 2005.

    Google Scholar 

  69. T. Biben, C. Misbah, A. Leyrat, and C. Verdier. An advected-field approach to the dynamics of fluid interfaces. Europhys. Lett., 63:623–629, 2003.

    Article  Google Scholar 

  70. G.E. Charles and S.G. Mason. The coalescence of liquid drops with flat liquidliquid interfaces. J. Colloid Sci., 15:236–267, 1960.

    Article  Google Scholar 

  71. P. Ghosh and V.A. Juvekar. Analysis of the drop rest phenomenon. Chem. Eng. Res. Design, 80:715–728, 2002.

    Article  Google Scholar 

  72. C.F. Ollivier-Gooch. Coarsening unstructured meshes by edge contraction. Int. J. Numer. Methods Eng., 57:391–414, 2003.

    Article  MATH  Google Scholar 

  73. V. Cristini and Y.C. Tan. Theory and numerical simulation of droplet dynamics in complex flows — a review. Lab Chip, 4:257–264, 2004.

    Article  Google Scholar 

  74. M. van Sint Annaland, N.G. Deen, and J.A.M. Kuipers, Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Set., 60:2999–3011, 2005.

    Article  Google Scholar 

  75. Q. Du, C. Liu, and X. Wang. Retrieving topological information for phase field models. SI AM J. Appl. Math. accepted for publication, 2005.

    Google Scholar 

  76. M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, NJ, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Feng, J.J., Liu, C., Shen, J., Yue, P. (2005). An Energetic Variational Formulation with Phase Field Methods for Interfacial Dynamics of Complex Fluids: Advantages and Challenges. In: Calderer, MC.T., Terentjev, E.M. (eds) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol 141. Springer, New York, NY. https://doi.org/10.1007/0-387-32153-5_1

Download citation

Publish with us

Policies and ethics