Skip to main content

Contribution of Ionic Currents to Tuning in Auditory Hair Cells

  • Chapter
Vertebrate Hair Cells

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong CE, Roberts WM (1998) Electrical properties of frog saccular hair cells: distortion by enzymatic dissociation. J Neurosci 18:2962–2973.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R (1987) Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385:207–242.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–1550.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Wu YC (1993) The effects of low calcium on the voltage-dependent conductances involved in tuning of turtle hair cells. J Physiol 470:109–126.

    PubMed  CAS  Google Scholar 

  • Art JJ, Wu YC, Fettiplace R (1995) The calcium-activated potassium channels of turtle hair cells. J Gen Physiol 105:49–72.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore JF, Attwell D (1985) Models for electrical tuning in hair cells. Proc R Soc Lond Ser B 226:325–344.

    Article  Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Bermingham-McDonogh O, Rubel EW (2003) Hair cell regeneration: winging our way towards a sound future. Curr Opin Neurobiol 13:119–126.

    Article  PubMed  CAS  Google Scholar 

  • Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461.

    Article  PubMed  CAS  Google Scholar 

  • Catacuzzeno L, Fioretti B, Perin P, Franciolini F (2004) Spontaneous low-frequency voltage oscillations in frog saccular hair cells. J Physiol 561:685–701.

    Article  PubMed  CAS  Google Scholar 

  • Chabbert C, Mechaly I, Sieso V, Giraud P, Brugeaud A, Lehouelleur J, Couraud F, Valmier J, Sans A (2003) Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J Physiol 553:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981a) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981b) Non-linearities in the responses of turtle hair cells. J Physiol 315:317–338.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434.

    PubMed  CAS  Google Scholar 

  • Dulon D, Sugasawa M, Blanchet C, Erostegui C (1995) Direct measurements of Ca2+-activated K+ currents in inner hair cells of the guinea-pig cochlea using photolabile Ca2+ chelators. Pflugers Arch 430:365–373.

    Article  PubMed  CAS  Google Scholar 

  • Duncan RK, Fuchs PA (2003) Variation in the large-conductance calcium-activated potassium channels from hair cells along the chicken basilar papilla. J Physiol 547:357–371.

    Article  PubMed  CAS  Google Scholar 

  • Eatock RA, Saeki M, Hutzler MJ (1993) Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard’s cochlea. J Neurosci 13:1767–1783.

    PubMed  CAS  Google Scholar 

  • Engel J, Michna M, Platzer J, Striessnig J. (2002) Calcium channels in mouse hair cells: function, properties and pharmacology. Adv Otorhinolaryngol 59:35–41.

    PubMed  CAS  Google Scholar 

  • Evans MG, Fuchs PA (1987) Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea. Biophys J 52:649–652.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annu Rev Physiol 61:809–34.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R, Ricci AJ (2003) Adaptation in auditory hair cells. Curr Opin Neurobiol 13:446–451.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1988) Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea. J Comp Physiol [A] 164:151–163.

    Article  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1990) Potassium currents in hair cells isolated from the cochlea of the chick. J Physiol 429:529–551.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci. 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Sokolowski BH (1990) The acquisition during development of Ca-activated potassium currents by cochlear hair cells of the chick. Proc R Soc Lond B Biol Sci 241:122–1260.

    CAS  Google Scholar 

  • Fuchs PA, Evans MG, Murrow BW (1990) Calcium currents in hair cells isolated from the cochlea of the chick. J Physiol 429:553–568.

    PubMed  CAS  Google Scholar 

  • Goodman MB, Art JJ (1996a) Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells. Biophys J 71:430–442.

    PubMed  CAS  Google Scholar 

  • Goodman MB, Art JJ (1996b) Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. J Physiol 497:395–412.

    PubMed  CAS  Google Scholar 

  • Grunnet M, Kaufmann WA (2004) Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain. J Biol Chem 279:36445–36453.

    Article  PubMed  CAS  Google Scholar 

  • Hafidi A, Beurg M, Dulon D (2005) Localization and developmental expression of BK channels in mammalian cochlear hair cells. Neuroscience 130:475–484.

    Article  PubMed  CAS  Google Scholar 

  • Hall SK, Armstrong DL (2000) Conditional and unconditional inhibition of calciumactivated potassium channels by reversible protein phosphorylation. J Biol Chem 275:3749–3754.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham L, MacKinnon R (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8:483–491.

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA: Sinauer Press.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.

    PubMed  CAS  Google Scholar 

  • Holt JR, Eatock RA (1995) The inwardly rectifying currents of saccular hair cells from the leopard frog. J Neurophysiol 73:1484–1502.

    PubMed  CAS  Google Scholar 

  • Holton T, Weiss TF (1983a) Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea. J Physiol 345:241–260.

    PubMed  CAS  Google Scholar 

  • Holton T, Weiss TF (1983b) Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones. J Physiol 345:205–240.

    PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448:73–98.

    PubMed  CAS  Google Scholar 

  • Housley GD, Norris CH, Guth PS (1989) Electrophysiological properties and morphology of hair cells isolated from the semicircular canal of the frog. Hear Res 38:259–276.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988a) Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:237–274.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988b) A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:275–297.

    PubMed  CAS  Google Scholar 

  • Issa NP, Hudspeth AJ (1994) Clustering of Ca2+ channels and Ca2+-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci USA 91:7578–7582.

    Article  PubMed  CAS  Google Scholar 

  • Jiang GJ, Zidanic M, Michaels RL, Michael TH, Griguer C, Fuchs PA (1997) CSlo encodes calcium-activated potassium channels in the chick’s cochlea. Proc R Soc Lond B Biol Sci 264:731–737.

    Article  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    Article  PubMed  CAS  Google Scholar 

  • Jones EMC, Laus C, Fettiplace R (1998) Identification of Ca2+-activated K+ channel splice variants and their distribution in the turtle cochlea. Proc R Soc Lond B Biol Sci 265:685–692.

    Article  CAS  Google Scholar 

  • Jones EMC, Gray-Keller M, Fettiplace R (1999) The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 518:653–665.

    Article  PubMed  CAS  Google Scholar 

  • Judge SI, Yeh JZ, Goolsby JE, Monteiro MJ, Bever CT, Jr. (2002) Determinants of 4-aminopyridine sensitivity in a human brain kv1.4 K(+) channel: phenylalanine substitutions in leucine heptad repeat region stabilize channel closed state. Mol Pharmacol 61:913–920.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch GE, Narahashi T (1983) Site of action and active form of aminopyridines in squid axon membranes. J Pharmacol Exp Ther 226:174–1179.

    PubMed  CAS  Google Scholar 

  • Kirsch GE, Shieh CC, Drewe JA, Vener DF, Brown AM (1993) Segmental exchanges define 4-aminopyridine binding and the inner mouth of K+ pores. Neuron 11:503–512.

    Article  PubMed  CAS  Google Scholar 

  • Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994) Primary sequence and immunological characterization of beta-subunit of high conductance Ca2+-activated K+ channel from smooth muscle. J Biol Chem 269:17274–8.

    PubMed  CAS  Google Scholar 

  • Kollmar R, Montgomery LG, Fak J, Henry LJ, Hudspeth AJ (1997) Predominance of the alpha1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 94:14883–14888.

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ (1996) Physiology of Mammalian Cochlear Hair Cells. In: Dallos PP, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 318–385.

    Google Scholar 

  • Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291.

    PubMed  CAS  Google Scholar 

  • Kros CJ, Ruppersberg JP, Rüsch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Kwon SH, Guggino WB (2004) Multiple sequences in the C terminus of MaxiK channels are involved in expression, movement to the cell surface, and apical localization. Proc Natl Acad Sci USA 101:15237–42.

    Article  PubMed  CAS  Google Scholar 

  • Lagrutta A, Shen K-Z, North RA, Adelman JP (1994) Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. Biol Chem 269:20347–20351.

    CAS  Google Scholar 

  • Lang DG, Correia MJ (1989) Studies of solitary semicircular canal hair cells in the adult pigeon. II. Voltage-dependent ionic conductances. J Neurophysiol 62:935–945.

    PubMed  CAS  Google Scholar 

  • Langer P, Grunder S, Rüsch A (2003) Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. J Comp Neurol 455:198–209.

    Article  PubMed  CAS  Google Scholar 

  • Lennan GW, Steinacker A, Lehouelleur J, Sans A (1999) Ionic currents and currentclamp depolarisations of type I and type II hair cells from the developing rat utricle. Pflugers Arch 438:40–46.

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Hibino H, Hudspeth AJ (2004) Association of beta-catenin with the alphasubunit of neuronal large-conductance Ca2+-activated K+ channels. Proc Natl Acad Sci USA 101:671–675.

    Article  PubMed  CAS  Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage-and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541.

    Article  PubMed  CAS  Google Scholar 

  • Lippiat JD, Standen NB, Harrow ID, Phillips SC, Davies NW (2003) Properties of BK(Ca) channels formed by bicistronic expression of hSloα and β1-4 subunits in HEK293 cells. J Membr Biol 192:141–148.

    Article  PubMed  CAS  Google Scholar 

  • Lipscombe D, Helton TD, Xu W. (2004) L-type calcium channels: the low down. J Neurophysiol. 92:2633–2641.

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369.

    Article  PubMed  CAS  Google Scholar 

  • Mammano F, Ashmore JF (1996) Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig. J Physiol 496:639–646.

    PubMed  CAS  Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Kros CJ (1999) Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 520:653–660.

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Geleoc GS, Lennan GW, Kros CJ (1999) Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. Pflugers Arch 439:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Rüsch A, Kros CJ (2003) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552:743–761.

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ (2004) Effects of intracellular stores and extracellular Ca2+ on Ca2+-activated K+ currents in mature mouse inner hair cells. J Physiol 557:613–633.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Bozovic D, Choe Y, Hudspeth AJ (2003) Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. J Neurosci 23:4533–4548.

    PubMed  CAS  Google Scholar 

  • Martinez-Dunst C, Michaels RL, Fuchs PA (1997) Release sites and calcium channels in hair cells of the chick’s cochlea. J Neurosci 17:9133–9144.

    PubMed  CAS  Google Scholar 

  • Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455.

    PubMed  CAS  Google Scholar 

  • Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P, Valli P (2003) Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J Neurophysiol 90:1266–1278.

    Article  PubMed  CAS  Google Scholar 

  • Mason K, Peale FV Jr, Stone JS, Rubel EW, Bothwell M (1998) Expression of novel potassium channels in the chick basilar papilla. Hear Res 125:120–130.

    Article  PubMed  CAS  Google Scholar 

  • McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650.

    Article  PubMed  CAS  Google Scholar 

  • Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage-and calciumdependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc Natl Acad Sci USA 94:14066–14071.

    Article  PubMed  CAS  Google Scholar 

  • Murray JD (1989) Mathematical Biology. Berlin: Springer-Verlag.

    Google Scholar 

  • Murrow BW (1994) Position-dependent expression of potassium currents by chick cochlear hair cells. J Physiol 480:247–259. (Erratum in: J Physiol 482:725).

    PubMed  CAS  Google Scholar 

  • Murrow BW, Fuchs PA (1990) Preferential expression of transient potassium current (IA) by’ short’ hair cells of the chick’s cochlea. Proc R Soc Lond B Biol Sci 242:189–195.

    CAS  Google Scholar 

  • Navaratnam DS, Escobar L, Covarrubias M, Oberholtzer JC (1995) Permeation properties and differential expression across the auditory receptor epithelium of an inward rectifier K+ channel cloned from the chick inner ear. J Biol Chem 270:19238–19245.

    Article  PubMed  CAS  Google Scholar 

  • Navaratnam DS, Bell TJ, Tu TD, Cohen EL, Oberholtzer JC (1997) Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19:1077–1085.

    Article  PubMed  CAS  Google Scholar 

  • Nenov AP, Norris C, Bobbin RP (1997) Outwardly rectifying currents in guinea pig outer hair cells. Hear Res 105:146–158.

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Qian X, Magleby KL (2004) Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage-and Ca2+-activated potassium channel. Neuron 42:745–756.

    Article  PubMed  CAS  Google Scholar 

  • Nouvian R, Ruel J, Wang J, Guitton MJ, Pujol R, Puel JL (2003) Degeneration of sensory outer hair cells following pharmacological blockade of cochlear KCNQ channels in the adult guinea pig. Eur J Neurosci 17:2553–2562.

    Article  PubMed  Google Scholar 

  • Oberst C, Weiskirchen R, Hartl M, Bister K (1997) Suppression in transformed avian fibroblasts of a gene (CO6) encoding a membrane protein related to mammalian potassium channel regulatory subunits. Oncogene 14:1109–1116.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H (1994) Studies of ionic currents in the isolated vestibular hair cell of the chick. J Physiol (London) 350:561–581.

    Google Scholar 

  • Oliver D, Plinkert P, Zenner HP, Ruppersberg JP (1997) Sodium current expression during postnatal development of rat outer hair cells. Pflugers Arch 434:772–778.

    Article  PubMed  CAS  Google Scholar 

  • Oliver D, Knipper M, Derst C, Fakler B (2003) Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J Neurosci 23:2141–2149.

    PubMed  CAS  Google Scholar 

  • Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci 17:156–161.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Pantelias AA, Monsivais P, Rubel EW (2001) Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla. Hear Res 156:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Pitchford S, Ashmore JF (1987) An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear Res 27:75–83.

    Article  PubMed  CAS  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Preyer P, Renz S, Hemmert, W, Zenner, H-P, and Gummer AW (1996) Receptor potential of outer hair cells isolated from base to apex of the adult guinea pig cochlea: implications for cochlear tuning mechanisms. Aud Neurosci 2:145–157.

    Google Scholar 

  • Prigioni I, Masetto S, Russo G, Taglietti V (1992) Calcium currents in solitary hair cells isolated from frog crista ampullaris. J Vestib Res 2:31–39.

    PubMed  CAS  Google Scholar 

  • Pyott SJ, Glowatzki E, Trimmer JS, Aldrich RW (2004) Extrasynaptic localization of inactivating calcium-activated potassium channels in mouse inner hair cells. J Neurosci 24:9469–9474.

    Article  PubMed  CAS  Google Scholar 

  • Quirk JC, Reinhart PH (2001) Identification of a novel tetramerization domain in large conductance K(ca)channels. Neuron 32:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K, Fuchs PA (2002) Modeling hair cell tuning by expression gradients of potassium channel beta subunits. Biophys J 82:64–75.

    PubMed  CAS  Google Scholar 

  • Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA (1999) A molecular mechanism for electrical tuning of cochlear hair cells. Science 283:215–217.

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K, Michael TH, Fuchs PA (2000) Beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells. J Neurosci 20:1675–1684.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Wu YC, Fettiplace R (1998) The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci 18:8261–8277.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000a) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Gray-Keller M, Fettiplace R (2000b) Tonotopic variations of calcium signaling in turtle auditory hair cells. J Physiol 524:423–436.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R (2005) The transduction channel filter in auditory hair cells. J Neurosci 25:7831–7839.

    Article  PubMed  CAS  Google Scholar 

  • Rispoli G, Martini M, Rossi ML, Rubbini G, Fesce R (2000) Ca2+-dependent kinetics of hair cell Ca2+ currents resolved with the use of cesium BAPTA. NeuroReport 11: 2769–2774.

    PubMed  CAS  Google Scholar 

  • Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Contreras A, Yamoah EN (2001) Direct measurement of single-channel Ca2+ currents in bullfrog hair cells reveals two distinct channel subtypes. J Physiol 534:669–89.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt KP, Sun ZP, Heller S, Hudspeth AJ (1997) Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron 19:1061–1075.

    Article  PubMed  CAS  Google Scholar 

  • Rüsch A, Eatock RA (1996) A delayed rectifier in type I hair cells of the mouse utricle. J Neurophysiol 76:995–1004.

    PubMed  Google Scholar 

  • Rüsch A, Eatock RA (1997) Sodium currents in hair cells of the mouse utricle. In: Lewis ER, Long GR, Lyon RF, Steele CR, Narins PM, Hecht-Poinar E (eds), Diversity in Auditory Mechanics Singapore: World Scientific, pp. 549–555.

    Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290.

    PubMed  CAS  Google Scholar 

  • Rüttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, Arntz C, Langer P, Hirt B, Müller M, Köpschall I, Pfister M, Münkner S, Rohbock K, Pfaff I, Rüsch A, Ruth P, Knipper M (2004) Deletion of the Ca2+-activated potassium (BK) α-subunit but not the BK β1-subunit leads to progressive hearing loss. Proc Natl Acad Sci USA 101:12922–12927.

    Article  PubMed  Google Scholar 

  • Saito M, Nelson C, Salkoff L, Lingle CJ (1997) A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem 272:11710–11717.

    Article  PubMed  CAS  Google Scholar 

  • Samaranayake H, Saunders JC, Greene MI, Navaratnam DS (2004) Ca2+ and K+ (BK) channels in chick hair cells are clustered and colocalized with apical-basal and tonotopic gradients. J Physiol 560:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Samaranayake H, Santos-Sacchi J, Navaratnam D (2005) The effects of beta subunits on the kineitc properties of BK channels in chick hair cells. Assoc Res Otolaryngol Abstr 28:367.

    Google Scholar 

  • Schnee ME, Ricci AJ (2003) Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells. J Physiol 549:697–717.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73:1355–1363.

    PubMed  CAS  Google Scholar 

  • Schubert R, Nelson MT (2001) Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol Sci 22:505–512.

    Article  PubMed  CAS  Google Scholar 

  • Shieh C-C, Kirsch GE (1994) Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K channels. Biophys J 67:2316–2325.

    PubMed  CAS  Google Scholar 

  • Skinner LJ, Enee V, Beurg M, Jung HH, Ryan AF, Hafidi A, Aran JM, Dulon D (2003) Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the guinea pig cochlea. J Neurophysiol 90:320–332.

    Article  PubMed  CAS  Google Scholar 

  • Smotherman MS, Narins PM (1999) The electrical properties of auditory hair cells in the frog amphibian papilla. J Neurosci 19:5275–5292.

    PubMed  CAS  Google Scholar 

  • Stefani E, Ottolia M, Noceti F, Olcese R, Wallner M, Latorre R, Toro L (1997) Voltagecontrolled gating in a large conductance Ca2+-sensitive K+ channel (hslo). Proc Natl Acad Sci USA 94:5427–5431.

    Article  PubMed  CAS  Google Scholar 

  • Steinacker A, Romero A (1992) Voltage-gated potassium current and resonance in the toadfish saccular hair cell. Brain Res 574:229–236.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Meera P, Song M, Knaus HG, Toro L (1997) Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 502:545–557.

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Duncan RR, Hammond MS, Coghill LS, Wen H, Rusinova R, Clark AG, Levitan IB, Shipston MJ (2001) Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J Biol Chem 276:7717–7720.

    Article  PubMed  CAS  Google Scholar 

  • Tseng-Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, Reinhart PH (1994) Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13:1315–1330.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–290.

    Article  PubMed  CAS  Google Scholar 

  • Tucker T, Fettiplace R (1995) Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron 15:1323–1335.

    Article  PubMed  CAS  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci USA 96:4137–4142.

    Article  PubMed  CAS  Google Scholar 

  • Wang YW, Ding JP, Xia XM, Lingle CJ (2002) Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J Neurosci 22:1550–1561.

    PubMed  CAS  Google Scholar 

  • Wong WH, Hurley KM, Eatock RA (2004) Differences between the negatively activating potassium conductances of mammalian cochlear and vestibular hair cells. J Assoc Res Otolaryngol 5:270–284.

    Article  PubMed  Google Scholar 

  • Witt CM, Hu HY, Brownell WE, Bertrand D (1994) Physiologically silent sodium channels in mammalian outer hair cells. J Neurophysiol 72:1037–1040.

    PubMed  CAS  Google Scholar 

  • Wu YC, Fettiplace R (1996) A developmental model for generating frequency maps in the reptilian and avian cochleas. Biophys J 70:2557–2570.

    PubMed  CAS  Google Scholar 

  • Wu YC, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Mol Biol 63:131–158.

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Black DL (2001) A CaMK IV responsive RNA element mediates depolarization-induiced alternative splicing of ion channels. Nature 410:936–939.

    Article  PubMed  CAS  Google Scholar 

  • Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446.

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Lipscombe D. (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951.

    PubMed  CAS  Google Scholar 

  • Zidanic M, Fuchs PA (1995) Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J 68:1323–1336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Art, J.J., Fettiplace, R. (2006). Contribution of Ionic Currents to Tuning in Auditory Hair Cells. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_5

Download citation

Publish with us

Policies and ethics