Skip to main content

Advanced Regulatory Topics

  • Chapter
  • 2466 Accesses

Summary

There are many potential problems inherent in trying to regulate multioperon systems. Commonly used strategies include activator proteins that must be present at every promoter in every operon within the system and special sigma factors that activate the otherwise inactive promoters. It is becoming clear that small RNA molecules may also regulate either positively or negatively. As in the case of phage T4, bacteria also sometimes use cascades of sigma factors in which each new sigma factor induces synthesis of yet another sigma factor. The advantage of such a system is its ability to ensure that specific biochemical events occur in a defined sequence. An additional regulatory element that sometimes occurs both in prokaryotes and in eukaryotes is the enhancer, a discrete site to which a protein must bind for a promoter to be fully functional. Multifunctional regulatory proteins are often the subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by insertion of extraneous genetic information are now known. Removal of the extra material can occur by protein splicing or recombination prior to transcription.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Generalized

  • Boos, W., Shuman, H. (1998). Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiology and Molecular Biology Reviews 62: 204–229.

    CAS  PubMed  Google Scholar 

  • Dixon, R. (1998). The oxygen-responsive NIFL-NIFA complex: A novel two-component regulatory system controlling nitrogenase synthesis in γ-proteobacteria. Archives of Microbiology 169: 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Geiduschek, E.P. (1997). Paths to activation of transcription. Science 275: 1614–1616.

    Article  CAS  PubMed  Google Scholar 

  • Gogarten, J.P., Senejani, A.G., Zhaxybayeva, O., Olendzenski, L., Hilario, E. (2002). Inteins: Structure, function, and evolution. Annual Review of Microbiology 56: 263–287.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, S. (2004). The small RNA regulators of Escherichia coli: Roles and mechanisms. Annual Review of Microbiology 58: 303–328.

    Article  CAS  PubMed  Google Scholar 

  • Gruber, T.M., Gross, C.A. (2003). Multiple sigma subunits and the partitioning of bacterial transcription space. Annual Review of Microbiology 57: 441–466.

    Article  CAS  PubMed  Google Scholar 

  • Hilbert, D.W., Piggot, P.J. (2004). Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiology and Molecular Biology Reviews 68: 234–262.

    Article  CAS  PubMed  Google Scholar 

  • Laksanalamai, P., Whitehead, T.A., Robb, F.T. (2004). Minimal protein-folding systems in hyperthermophilic archaea. Nature Reviews: Microbiology 2: 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Argudo, I., Little, R., Shearer, N., Johnson, P., Dixon, R. (2004). The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals. Journal of Bacteriology 186: 601–610.

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus, F. (1999). Negative regulation of bacterial heat shock genes. Molecular Microbiology 31: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Wösten, M.M.S.M. (1998). Eubacterial sigma-factors. FEMS Microbiology Reviews 22: 127–150.

    Article  PubMed  Google Scholar 

Specialized

  • Govantes, F., Andújar, E., Santero, E. (1999). Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae. The EMBO Journal 17: 2368–2377.

    Article  Google Scholar 

  • Horlacher, R., Xavier, K.B., Santos, H., Diruggiero, J., Kossmann, M., Boos, W. (1998). Archaeal binding protein-dependent ABC transporter: Molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Bacteriology 180: 680–689.

    CAS  PubMed  Google Scholar 

  • Jack, R., De Zamaroczy, M., Merrick, M. (1999). The signal transduction protein glnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. Journal of Bacteriology 181: 1156–1162.

    CAS  PubMed  Google Scholar 

  • Joly, N., Danot, O., Schlegel, A., Boos, W., Richet, E. (2002). The Aes protein directly controls the activity of MalT, the central transcriptional activator of the Escherichia coli maltose regulon. The Journal of Biological Chemistry 277: 16606–16613.

    Article  CAS  PubMed  Google Scholar 

  • Joly, N., Böhm, A., Boos, W., Richet, E. (2004). MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding. The Journal of Biological Chemistry 279: 33123–33130.

    Article  CAS  PubMed  Google Scholar 

  • Klein, G., Dartigalongue, C., Raina, S. (2003). Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Molecular Microbiology 48: 269–285.

    Article  CAS  PubMed  Google Scholar 

  • Mogk, A., Deuerling, E., Vorderwülbecke, S., Vierling, E., Bukau, B. (2003). Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology 50: 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Mujacic, M., Bader, M.W., Baneyx, F. (2004). Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Molecular Microbiology 51: 849–859.

    Article  CAS  PubMed  Google Scholar 

  • Thiel, T., Lyons, E.M., Erker, J.C. (1997). Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. Journal of Bacteriology 179: 5222–5225.

    CAS  PubMed  Google Scholar 

  • Wu, H., Hu, Z., Liu, X.-Q. (1998). Protein trans-splicing by a split intein encoded in a split dnaE gene of Synechocystis sp. PC 06803. Proceedings of the National Academy of Sciences of the USA 95: 9226–9231.

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Advanced Regulatory Topics. In: Bacterial and Bacteriophage Genetics. Springer, New York, NY. https://doi.org/10.1007/0-387-31489-X_14

Download citation

Publish with us

Policies and ethics