Skip to main content

Controlling Image Recostruction Process in Digital Holography

  • Chapter

Abstract

The reconstruction of digital holograms is a full numeric process. Such peculiarity offers the possibility to control several parameters during the reconstruction process. In this chapter we will describe some recent advancements of Digital Holography and how it is possible to control the numerical reconstruction process by optimizing or regulating different parameters. By controlling the reconstruction process it is possible to overcome some problems arising during the optical tests of materials and devices or to improve the imaging capability of DH for example for color 3D imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Schnars, W. Juptner, Digital recording and numerical reconstruction of holograms, Meas. Sci. Technol, 13, R85–R101, (2002).

    Article  ADS  Google Scholar 

  2. T.M. Kreis, W. Jüptner, Principles of Digital Holography. In: Jüptner, Osten, editors. Fringe 97, Academic Verlag, 253–363, (1997).

    Google Scholar 

  3. I. Yamaguchi, T. Matsumura, and J. Kato, Phase-shifting colour digital holography, Opt. Lett. 27, 1108–1110, (2002).

    Article  ADS  Google Scholar 

  4. O. Matoba and B. Javidi, Optical retrieval of encrypted digital holograms for secure real-time display, Opt. Lett., 27, 321–323, (2002).

    Article  ADS  Google Scholar 

  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, Digital Holography for quantitative phase-contrast imaging, Opt. Lett. 24, 291–293 (1999).

    Article  ADS  Google Scholar 

  6. E. Cuche, P. Marquet, and C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms, Appl. Opt. 38, 6994–7001, (1999).

    Article  ADS  Google Scholar 

  7. P. Ferraro, S. DeNicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase contrast imaging, Appl. Opt., 42, 1936–1946, (2003)

    Article  ADS  Google Scholar 

  8. P. Ferraro, S. De Nicola, A. Finizio, and G. Pierattini, “Reflective grating interferometer in a non collimated configuration”, Appl. Opt. 39, 2116–2121 (2000).

    Article  ADS  Google Scholar 

  9. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, Correct-image reconstruction in the presence of severe anamorphism by means of digital holography, Opt. Lett. 26, 974–977 (2001)

    Article  ADS  Google Scholar 

  10. S. De Nicola, P. Ferraro, A. Finizio and G. Pierattini, “Reflective grating interferometer: a folded reversal wave-front interferometer,” Appl. Opt. 38, 4845–4849 (1999).

    Article  ADS  Google Scholar 

  11. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett., 25, 1630–1633 (2000).

    Article  ADS  Google Scholar 

  12. G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).

    Article  ADS  Google Scholar 

  13. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, R. Meucci Whole optical wavefields reconstruction by digital holography, Opt. Exp. 9, 294–302 (2001)

    Article  ADS  Google Scholar 

  14. T. M. Kreis, Frequency analysis of digital holography, Opt. Eng. 41, 771–778, (2002)

    Article  ADS  Google Scholar 

  15. T. M. Kreis, Frequency analysis of digital holography with reconstruction by convolution, Opt. Eng. 41, 1829–1839(2002)

    Article  ADS  Google Scholar 

  16. P. Ferraro, G. Coppola, S. DeNicola, A. Finizio, G. Pierattini, and D. Alfieri, Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms, Opt. Lett. 29, 854–856 (2004)

    Article  ADS  Google Scholar 

  17. S. DeNicola, P. Ferraro, G. Coppola, A. Finizio, G. Pierattini, and S. Grilli, Talbot self-image effect in digital holography and its application to spectrometry, Opt. Lett. 29, 104–106 (2004)

    Article  ADS  Google Scholar 

  18. M. Kim, Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography. Opt. Exp. 7, 305–310 (2000)

    Article  ADS  Google Scholar 

  19. N. Demoli, D. Vukicevic, and M. Torzynski, Dynamic digital holographic interferometry with three wavelengths, Opt. Express 11, 767–774, (2003)

    Article  ADS  Google Scholar 

  20. P. Ferraro, G. Coppola, D. Alfieri, S. De Nicola, A. Finizio, and G. Pierattini, Recent advancements in digital holographic microscopy and its applications in “Optical Metrology in Production Engineering”, vol. 5457 of “SPIE Proceedings” W. Osten and M. Takeda eds.,, pp. 481–491 (2004)

    Google Scholar 

  21. P.J. de Groot, Extending the unambiguous range of two-color interferometers, Appl. Opt. 33, 5948–5950 (1994).

    Article  ADS  Google Scholar 

  22. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, P. Ferraro “Recovering correct phase information in multiwavelenglhs digital holographic microscopy by compensation of chromatic aberrations”, in press Opt. Lett. (2005).

    Google Scholar 

  23. G. Coppola, P. Ferraro, M Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems”, Meas. Sci. and Tech. 15, 529–539 (2004).

    Article  ADS  Google Scholar 

  24. P. Ferraro, G. Coppola, S. DeNicola, A. Finizio, G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time”, Opt. Lett., 28, 1257–1259 (2003).

    Article  ADS  Google Scholar 

  25. J. H. Massig, Digital off-axis holography with a synthetic aperture, Opt. Lett. 27, 2179–2181 (2002)

    Article  ADS  Google Scholar 

  26. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Super-resolution digital holographic imaging method, Appl. Phys. Lett. 81, 3143–3145 (2002)

    Article  ADS  Google Scholar 

  27. P. Ferraro, S. DeNicola, A. Finizio, G. Pierattini, and G. Coppola, Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method, Appl. Phys. Lett. 85, 2709–20711 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ferraro, P., De Nicola, S., Coppola, G. (2006). Controlling Image Recostruction Process in Digital Holography. In: Poon, TC. (eds) Digital Holography and Three-Dimensional Display. Springer, Boston, MA . https://doi.org/10.1007/0-387-31397-4_6

Download citation

Publish with us

Policies and ethics