Skip to main content

Potassium Channels in the Central Control of Breathing

  • Conference paper
THE ARTERIAL CHEMORECEPTORS

Abstract

Ventilation is closely tied to PaCO2 and PaO2 via a feedback control mechanism. Most importantly, changes in PCO2 and/or H+ (pH) are sensed by the central nervous system (CNS) resulting in directly related changes in ventilation. The magnitude of this response relative to the stimulus is known as, “central ventilatory chemosensitivity.” Several electrophysiological studies have demonstrated that chemosensitive neurons – i.e. neurons that change their electrical activity in response to a shift of PCO2/pH – are widely distributed throughout the brainstem (Bernard and Nattie, 1996; Coates and Nattie, 1993; Dean et al., 1989, 1990; Kawai et al., 1996; Oyamada et al., 1998, 1999; Richerson, 1995), suggesting that they could be the central CO2/pH sensors that regulate ventilation. In addition, PaO2 levels are inversely related to ventilation. The type I cells of the carotid body serve as the main sensors stimulating ventilation when PaO2 declines (“peripheral ventilatory chemosensitivity”). The afferent inputs from these PCO2/pH- or PO2-sensitive cells converge at the respiratory center located in the brainstem, where the generation of respiratory neural activity is integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayliss D.A., Talley E.M., Sirois J.E., and Lei Q., 2001. TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol. 129: 159–174.

    Article  PubMed  CAS  Google Scholar 

  • Bernard D.G., Li A., and Nattie, E.E., 1996. Evidence for central chemoreception in the midline raphe. J. Appl. Physiol. 80: 108–115.

    PubMed  CAS  Google Scholar 

  • Buckler K.J., Williams B.A., and Honoré E., 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525 (Pt 1): 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Chapman C.G., Meadows H.J., Godden R.J., Campbell D.A., Duckworth M., Kelsell R.E., Murdock P.R., Randall A.D., Rennie G.I., and Gloger I.S., 2000. Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res. Mol. Brain Res. 82: 74–83.

    Article  PubMed  CAS  Google Scholar 

  • Coates E.L., Li A., and Nattie E.E., 1993. Widespread sites of brain stem ventilatory chemoreceptors. J. Appl. Physiol. 75: 5–14.

    PubMed  CAS  Google Scholar 

  • Dean J.B., Lawing W.L., and Millhorn D.E., 1989. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp. Brain Res. 76: 656–661.

    Article  PubMed  CAS  Google Scholar 

  • Dean J.B., Bayliss D.A., Erickson J.T., Lawing W.L., and Millhorn D.E., 1990. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36: 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Guatteo E., Federici M., Siniscalchi A., Knopfel T., Mercuri N.B., and Bernardi G., 1998. Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea and ATP-sensitive component of potassium currents activated by hypoxia. J. Neurophysiol. 79: 1239–1245.

    PubMed  CAS  Google Scholar 

  • Haller M., Mironov S.L., Karschin A., and Richter D.W., 2001. Dynamic activation of KATP channels in rhythmically active neurons. J. Physiol. 537: 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Hartness M.E., Lewis A., Searle G.J., O’Kelly I., Peers C., and Kemp P.J., 2001. Combined antisense and pharmacological approaches implicate hTASK as an airway O2 sensing K+ channel. J. Biol. Chem. 276: 26499–26508.

    Article  PubMed  CAS  Google Scholar 

  • Karschin C., Dißmann E., Stühmer W., and Karschin A., 1996. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16: 3559–3570.

    PubMed  CAS  Google Scholar 

  • Karschin C., Ecke C., Ashcroft F.M., and Karschin A., 1997. Overlapping distribution of KATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Karschin C., and Karschin A., 1997. Ontogeny of gene expression of Kir channel subunits in the rat. Mol. Cell. Neurosci. 10: 131–148.

    Article  PubMed  CAS  Google Scholar 

  • Karschin A., Brockhaus J., and Ballanyi K., 1998. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J. Physiol. 509: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Kawai A., Ballantyne D., Mückenhoff K., and Scheid P., 1996. Chemosensitive medullary neurones in the brainstem-spinal cord preparation of the neonatal rat. J. Physiol. 492: 277–292.

    PubMed  CAS  Google Scholar 

  • Kim Y., Bang H., and Kim D., 2000. TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275: 9340–9347.

    Article  PubMed  CAS  Google Scholar 

  • Kofuji P., Ceelen P., Zahs K.R., Surbeck L.W., Lester H.A., and Newman E.A., 2000. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J. Neurosci. 20: 5733–5740.

    PubMed  CAS  Google Scholar 

  • Kulik A., Brockhaus J., Pedarzani P., and Ballanyi K., 2002. Chemical anoxia activates ATP-sensitive and blocks Ca2+-dependent K+ channels in rat dorsal vagal neurons in situ. Neuroscience 110: 541–554.

    Article  PubMed  CAS  Google Scholar 

  • Lesage F., and Lazdunski M., 2000. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol.279: F793–F801.

    PubMed  CAS  Google Scholar 

  • López-Barneo J., López- López J.R., Urena J., and González C., 1988. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241: 580–582.

    Article  PubMed  Google Scholar 

  • Lu M., Wang T., Yan Q., Yang X., Dong K., Knepper M.A., Wang W., Giebisch G., Shull G.E., and Hebert S.C., 2002. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J. Biol. Chem. 277: 37881–37887.

    Article  PubMed  CAS  Google Scholar 

  • Mironov S.L., Langohr K., Haller M., and Richter D.W., 1998. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice. J. Physiol. 509: 755–766.

    Article  PubMed  CAS  Google Scholar 

  • Neubauer J.A., and Sunderram J., 2004. Oxygen-sensing neurons in the central nervous system. J. Appl. Physiol. 96: 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Nieber K., Sevcik J., and Illes P., 1995. Hypoxic changes in rat locus coeruleus neurons in vitro. J. Physiol. 486: 33–46.

    PubMed  CAS  Google Scholar 

  • Okada Y., Kuwana S., Kawai A., Mückenhoff K., and Scheid, P., 2005. Significance of extracellular potassium in central respiratory control studied in the isolated brainstem-spinal cord preparation of the neonatal rat. Respir. Physiol. Neurobiol. 146: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Oyamada Y., Ballantyne D., Mückenhoff K., and Scheid P., 1998. Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J. Physiol. 513: 381–398.

    Article  PubMed  CAS  Google Scholar 

  • Oyamada Y., Andrzejewski M., Mückenhoff K., Scheid P., and Ballantyne D., 1999. Locus coeruleus neurones in vitro: pH-sensitive oscillations of membrane potential in an electrically coupled network. Respir. Physiol. 118: 131–147.

    Article  PubMed  CAS  Google Scholar 

  • Oyamada Y., Yamaguchi K., Murai M., Hakuno H., and Ishizaka A., 2005. Role of Kir2.2 in hypercapnic ventilatory response during postnatal development of mouse. Respir. Physiol. Neurobiol. 145: 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Garcia M.T., Lopez-Lopez J.R., Riesco A.M., Hoppe U.C., Marban E., Gonzalez, C., and Johns D.C., 2000. Viral gene transfer of dominant-negative Kv4 construct suppresses an O2-sensitive K+ current in chemoreceptor cells. J. Neurosci. 20: 5689–5695.

    PubMed  CAS  Google Scholar 

  • Pineda J., and Aghajanian G.K., 1997. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 77: 723–743.

    Article  PubMed  CAS  Google Scholar 

  • Qu Z., Zhu G., Yang Z., Cui N., Li Y., Chanchevalap S., Sulaiman S., Haynie H., and Jiang C., 1999. Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. J. Biol. Chem. 274: 13783–13789.

    Article  PubMed  CAS  Google Scholar 

  • Rajan S., Wischmeyer E., Xin Liu G., Preisig-Müller R., Daut J., Karschin A., and Derst C., 2000. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J. Biol. Chem. 275: 16650–16657.

    Article  PubMed  CAS  Google Scholar 

  • Richerson G.B., 1995. Response to CO2 of neurons in the rostral ventral medulla in vitro. J. Neurophysiol. 73, 933–944.

    PubMed  CAS  Google Scholar 

  • Washburn C.P., Sirois J.E., Talley E.M., Guyenet P.G., and Bayliss D.A., 2002. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci. 22: 1256–1265.

    PubMed  CAS  Google Scholar 

  • Wu J., Xu H., Shen W., and Jiang C., 2004, Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J. Membr. Biol. 197: 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Xu H., Cui N., Yang Z., Qu Z., and Jiang C., 2000a, Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis. J. Physiol. 524: 725–735.

    Article  CAS  Google Scholar 

  • Xu H., Yang Z., Cui N., Giwa L.R., Abdulkadir L., Patel M., Sharma P., Shan G., Shen W., and Jiang C., 2000b, Molecular determinants for the distinct pH sensitivity of Kir1. 1 and Kir4.1 channels. Am. J. Physiol. Cell Physiol. 279: C1464–C1471.

    CAS  Google Scholar 

  • Xu H., Cui N., Yang Z., Wu J., Giwa L.R., Abdulkadir L., Sharma P., and Jiang C., 2001. Direct activation of cloned KATP channels by intracellular acidosis. J. Biol. Chem. 276: 12898–12902.

    Article  PubMed  CAS  Google Scholar 

  • Zaritsky J.J., Redell J.B., Tempel B.L., and Schwarz T.L., 2001. The consequences of disrupting cardiac inwardly rectifying K+ current (I kl) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J. Physiol. 533: 697–710.

    Article  PubMed  CAS  Google Scholar 

  • Zhu G., Liu C., Qu Z., Chanchevalap S., Xu H., Jiang C., 2000. CO2 inhibits specific inward rectifier K+ channels by decreases in intra- and extracellular pH. J. Cell. Physiol. 183, 53–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

OYAMADA, Y., YAMAGUCHI, K., MURAI, M., ISHIZAKA, A., OKADA, Y. (2006). Potassium Channels in the Central Control of Breathing. In: Hayashida, Y., Gonzalez, C., Kondo, H. (eds) THE ARTERIAL CHEMORECEPTORS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 580. Springer, Boston, MA. https://doi.org/10.1007/0-387-31311-7_52

Download citation

Publish with us

Policies and ethics