Advertisement

Nitric Oxide in Brain Glucose Retention after Carotid Body Receptors Stimulation with Cyanide in Rats

  • S.A. MONTERO
  • J.L. CADENAS
  • M. LEMUS
  • E. ROCES DE ÁLVAREZ-BUYLLA.
  • R. ÁLVAREZ-BUYLLA.
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 580)

Abstract

In contrast to most other tissues, which exhibit considerable flexibility with respect to the nature of the substrates for their energy metabolism, the normal brain is restricted almost exclusively to glucose due to its distinguishing characteristics in vivo. Actual glucose utilization is 31 μmol/100 g tissue/min, in the normal, conscious human brain, indicating that glucose consumption is in excess for total oxygen consumption (Sokoloff, 1991). Although present in low concentration in brain (3.3 mmol/kg in rat), glycogen is a unique energy reserve for initiation of its metabolism. However, if glycogen concentration in the brain were the sole supply, normal energetic requirements would be maintained for less than 5 min (Sokoloff, 1991).

Keywords

Nitric Oxide Nitric Oxide Carotid Body Saline Injection Carotid Sinus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida A., Cidad P., Delgado-Esteban M., Fernandez E., Garcia-Nogales P., Bolaños J.P. Inhibition of mitochondrial respiration by nitric oxide: its role in glucose metabolism and neuroprotection. J Neurosci Res 2005; 79: 166–171.PubMedCrossRefGoogle Scholar
  2. Álvarez-Buylla R., Álvarez-Buylla E. Carotid sinus receptors participate in glucose homeostasis. Respir Physiol 1988; 72: 347–360.PubMedCrossRefGoogle Scholar
  3. Álvarez-Buylla R., Roces de Álvarez-Buylla, E. Changes in blood glucosa concentration in the carotid body-sinus modify brain glucose retention. Brain Res 1994; 654: 167–170.PubMedCrossRefGoogle Scholar
  4. Álvarez-Buylla R., Huberman A., Montero S. Lemus M., Valles V. Roces de Alvarez-Buylla E. Induction of brain glucose uptake by a factor secreted into cerebrospinal fluid. Brain Res 2003; 994: 124–133.PubMedCrossRefGoogle Scholar
  5. Buerk D.G., Lahiri S. Evidence that nitric oxide plays a role in O2 sensing from tissue NO and PO2 measurements in cat carotid body. Adv. Exp. Med. Biol 2000; 475: 337–347.Google Scholar
  6. Chugh D.K, Katayama M., Mokashi A., Debout D.E., Ray D.K. Lahiri S. Nitric oxide-related inhibition of carotid chemosensory activity in the cat. Respir Physiol 1994; 97: 147–152.PubMedCrossRefGoogle Scholar
  7. Higaki Y., Hirshman M.F., Fujii N., Goodyear L.J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 2001; 50: 241–247.PubMedGoogle Scholar
  8. Hudson L.C., Hughes C.S., Bold-Fletcher N.O., Vaden, S.L. (1994). Cerebrospinal fluid collection in rats: modification of a previous technique. Lab Animal Sci, 44: 358–361.Google Scholar
  9. Iturriaga R., Alcayaga J., Rey S. Sodium nitroprusside blocks the cat carotid chemosensory inhibition induced by dopamine, but not that by hyperoxia. Brain Res 1998; 799: 26–34.PubMedCrossRefGoogle Scholar
  10. Iturriaga R., Villanueva S., Mosqueira M. Dual effects of nitric oxide on cat carotid body chemoreception. J Appl Physiol 2000; 89: 1005–1012.PubMedGoogle Scholar
  11. Kadekaro M., Terrell M. L., Liu H., Gestl S., Bui V., Summy-Long, J.Y. Effects of L-NAME on cerebral metabolic, vasopressin, oxytocin, and blood pressure responses in hemorrhaged rats. American Journal of Physiology 1998; 274: 1070–1077.Google Scholar
  12. Koyama Y., Cocker R.H., Stone E.E., Lacy D.B., Jabbour K., Williams P.E. Wasserman D.H. Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 2000; 49: 1434–1442.PubMedGoogle Scholar
  13. Kantzides A., Badoer E. nNOS-containing neurons in the hypothalamus and medulla project to the RVLM. Brain Res 2005; 1037: 25–34.PubMedCrossRefGoogle Scholar
  14. McCrimmon R.J., Fan X., Ding Y, Zhu W., Jacob RJ., Sherwin R.S. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 2004; 53: 1953–1958.PubMedGoogle Scholar
  15. Mitchell D.H., Owens, B. Replacement therapy: arginine-vasopressin (AVP), growth hormone (GH), cortisol, thyroxine, testosterone and estrogen. J. Neurosci Nurs 1996; 28: 140–154.PubMedGoogle Scholar
  16. Montero S.A., Yarkov A., Lemus M., Mendoza H., Valles V., Álvarez-Buylla E. Álvarez-Buylla R. Enhancing effect of vasopressin on the hyperglycemic response to carotid body chemoreceptor stimulation: role of metabolism variables. Adv Exp Med Biol 2003; 536: 95–107.PubMedGoogle Scholar
  17. Obici S., Zhang B.B, Karkanias G., Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002; 8: 1376–1382.PubMedCrossRefGoogle Scholar
  18. Pardal, R., López-Barneo, J. Low glucose sensing cells in the carotid body. Nature Neuroscience 2002; 5: 197–198.PubMedCrossRefGoogle Scholar
  19. Prabhakar N.R. Neurotransmitters in the carotid body. Adv Exp Med Biol 1994; 360: 57–69.PubMedGoogle Scholar
  20. Sokoloff, Louis. “Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain.” In Fuel Homeostasis and the Nervous System, M. Vranic and et al. eds. New York: Plenum Press, 1991; pp. 21–42Google Scholar
  21. Tong Y.C., Wang C.J., Cheng J.T. The role of nitric oxide in the control of plasma glucose concentration in spontaneously hypertensive rats. Neurosci Lett 1997; 233: 93–96.PubMedCrossRefGoogle Scholar
  22. Trzebski A., Sato Y., Susuki A., Sato A. Inhibition of nitric oxide synthesis potentiates the responsiveness of carotid chemoreceptors to systemic hypoxia in the rat. Neurosci Lett 1995; 190: 29–33.PubMedCrossRefGoogle Scholar
  23. Uemura K., Tamagawa T., Chen Y., Maeda N., Yoshioka S., Itoh K., Miura H., Iguchi A., Hotta N. NG-methyl-L-arginine, an inhibitor of nitric oxide synthase, affects the central nervous system to produce peripheral hyperglycemia in conscious rats. Neuroendocrinol 1997; 66: 136–144.Google Scholar
  24. Wang Z.Z., Stensaas L.J., Dinger B.G., Fidone, S.J. Nitric oxide mediates chemoreceptor inhibition in the cat carotid body. Neurosci 1995; 65: 217–29.CrossRefGoogle Scholar
  25. Yamaguchi K., Hama H.A. Study on the mechanism by which sodium nitroprusside, a nitric oxide donor, applied to the anteroventral third ventricular region provokes facilitation of vasopressin secretion in conscious rats. Brain Res 2003; 968: 35–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S.A. MONTERO
    • 1
    • 2
  • J.L. CADENAS
    • 1
  • M. LEMUS
    • 1
  • E. ROCES DE ÁLVAREZ-BUYLLA.
    • 1
  • R. ÁLVAREZ-BUYLLA.
    • 1
  1. 1.Centro Universitario de Investigaciones BiomédicasColimaMéxico
  2. 2.Facultad de MedicinaUniversidad de ColimaColimaMéxico

Personalised recommendations