Advertisement

Effects of Low-Dose Methazolamide on the Control of Breathing in Cats

  • J.H.L. BIJL
  • B. MOUSAVI GOURABI
  • A. DAHAN
  • L.J. TEPPEMA
Conference paper
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 580)

Abstract

Inhibitors of carbonic anhydrase (CA) have complex effects on respiration. Many cells and tissues that are involved in the control of breathing contain various isoforms of CA, e.g., red cells, carotid bodies, lung and brain capillary endothelial cells, muscle and neurons closely associated with central chemoreceptors (1-9). In human and cats, low intravenous doses of acetazolamide have both stimulatory and inhibitory effects on the control of breathing. (10, 11). One of the inhibitory effects applies to the peripheral chemoreceptors because acetazolamide has been shown to reduce the hypoxic response and also the O2-CO2 interaction that is known to reside the carotid bodies (10,12,13).

Keywords

Carbonic Anhydrase Carotid Body Ventilatory Response Brain Capillary Endothelial Cell Peripheral Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maren T.H., 1967. Carbonic anhydrase: Chemistry, Physiology and inhibition. Physiol. Rev. 47: 595–781.PubMedGoogle Scholar
  2. 2.
    Maren T.H., 1977. Use of inhibitors in physiological studies of carbonic anhydrase. Am. J. Physiol. 232: F291–297.PubMedGoogle Scholar
  3. 3.
    Effros R.M., Chang R.S., Silverman P., 1978. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science 199: 1292–1298CrossRefGoogle Scholar
  4. 4.
    Ridderstråle Y., Hanson M.A., 1984. Histochemical localization of carbonic anhydrase in the cat carotid body. Proc. N.Y. Acad. Sci. 429: 398–400.CrossRefGoogle Scholar
  5. 5.
    Nurse C.A., 1990. Carbonic anhydrase and neuronal enzymes in cultured glomus cells of the carotid body of the rat. Cell Tissue Res. 261: 65–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Rigual C., Iñiguez C., Carreres J., Gonzales C., 1985. Carbonic anhydrase in the carotid body and the carotid sinus nerve. Histochem. 82: 577–580.CrossRefGoogle Scholar
  7. 7.
    Geers C., Gros G., 2000. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol. Rev. 80: 681–715.PubMedGoogle Scholar
  8. 8.
    Ridderstråle Y., Hanson M.A., 1985. Histochemical study of the distribution of carbonic anhydrase in the cat brain. Acta Physiol. Scand. 124: 557–564.PubMedGoogle Scholar
  9. 9.
    Torrance R.W., 1993. Carbonic anhydrase near central chemoreceptors. Adv. Exp. Med. Biol. 337: 235–239.PubMedGoogle Scholar
  10. 10.
    Swenson E.R., Hughes J.M.B., 1993. Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in man. J. Appl. Physiol. 74: 230–237.PubMedGoogle Scholar
  11. 11.
    Wagenaar M., Teppema L.J., Berkenbosch A., Olievier C.N., Folgering H., 1996. The effect of low-dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat. J. Physiol. (Lond.) 495: 227–237.Google Scholar
  12. 12.
    Teppema, L.J., Dahan A., 2004. Low-dose acetazolamide reduces the hypoxic ventilatory response in the anaesthetized cat, Respir. Physiol. Neurobiol. 140: 43–51.CrossRefGoogle Scholar
  13. 13.
    Teppema L.J., Dahan A., Olievier C.N., 2001. Low-dose acetazolamide reduces CO2-O2 stimulus interaction within peripheral chemoreceptors in the anaesthetized cat. J. Physiol. (Lond.) 537: 221–229.CrossRefGoogle Scholar
  14. 14.
    Tricarico D., Barbieri M., Mele, A., Carbonara G., Camerino D.C., 2004. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+ deficient rats. FASEB J. 18: 760–761.PubMedGoogle Scholar
  15. 15.
    Williams S.E., Wootton P, Mason MS, Bould J, Iles D.E., Riccardi D., Peers C., Kemp P.J., 2004. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science. 17: 306(5704): 2093–2097.CrossRefGoogle Scholar
  16. 16.
    DeGoede J., Berkenbosch A., Ward D.S., Bellville J.W., Olievier C.N., 1985. Comparison of chemoreflex gains obtained with two different methods in cats. J. Appl. Physiol. 59: 170–179.PubMedGoogle Scholar
  17. 17.
    Teppema L., Berkenbosch A., DeGoede J., Olievier C., 1995. Carbonic anhydrase and control of breathing: different effects of benzolamide and methazolamide in the anaesthetized cat. J. Physiol. (Lond.) 488: 767–777.Google Scholar
  18. 18.
    Kjällquist A., Messeter K., Siesjö B.K., 1970. The in vivo buffer capacity of the rat brain tissue under carbonic anhydrase inhibition. Acta Physiol. Scand. 78: 94–102.PubMedCrossRefGoogle Scholar
  19. 19.
    Teppema L.J., Dahan A., 2005. “Central chemoreceptors.” In: Pharmacology and Pathophysiology of the Control of Breathing, D.S. Ward, A. Dahan, L.J. Teppema eds. Series: Lung Biology in Health and Disease. Marcel Dekker Inc. New York 2005.Google Scholar
  20. 20.
    Yamamoto Y., Fujimura M., Nishita T., Nishijima K., Atoji Y., Suzuki Y., 2003. Immunohistochemical localization of carbonic anhydrase isoenzymes in the rat carotid body. J. Anat. 202: 573–577.PubMedCrossRefGoogle Scholar
  21. 21.
    Iturriaga R., Mokashi A., Lahiri S., 1933. Dynamics of carotid body responses in vitro in the presence of CO2-HCO3: role of carbonic anhydrase. J. Appl. Physiol. 75: 1587–1594.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J.H.L. BIJL
    • 1
  • B. MOUSAVI GOURABI
    • 1
  • A. DAHAN
    • 1
  • L.J. TEPPEMA
    • 1
  1. 1.Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations