The Cell-Vessel Architecture Model for the Central Respiratory Chemoreceptor



The group of Loeschcke established that the superficial ventrolateral medulla contains chemosensitive regions (see the reviews [1-3]). Later, the group of Nattie conducted experiments of acetazolamide microinjection that induced local tissue acidosis, and found that the midline region (raphe), nucleus tractus solitarii and locus coeruleus are also chemosensitive (see the review [4]). To map the medullary chemosensitive regions using a more physiological stimulation technique, we microinjected CO2-enriched saline into various regions of the in vivo and in vitro rat medulla, and found that the superficial midline, parapyramidal and ventrolateral regions are chemosensitive [5]. These findings extend other microinjection studies [6,7] that showed only that the superficial ventrolateral medulla is chemosensitive.


Nucleus Tractus Solitarii Ventrolateral Medulla Ventral Respiratory Group Ventral Medulla Fine Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loeschcke HH. Central chemosensitivity and the reaction theory. J Physiol 332: 1–24, 1982.PubMedGoogle Scholar
  2. 2.
    Kiwull-Schöne HF. The “Reaction Theory” of Hans Winterstein (1879–1963) in the light of today's research on the ventrolateral medulla. In Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure. Trouth CO, Millis RM, Kiwull-Schöne HF, Schläfke ME ed. Marcel Dekker, New York, pp 1–39, 1995.Google Scholar
  3. 3.
    Okada Y, Chen Z, Kuwana S. Cytoarchitecture of central chemoreceptors in the mammalian ventral medulla. Respir Physiol 291: 13–23, 2001.CrossRefGoogle Scholar
  4. 4.
    Nattie EE. Central chemosensitivity, sleep, and wakefulness. Respir Physiol 129: 257–268, 2001.PubMedCrossRefGoogle Scholar
  5. 5.
    Okada Y, Chen Z, Jiang W, Kuwana S, Eldridge FL. Functional connection from the surface chemosensitive region to the respiratory neuronal network in the rat medulla. Adv Exp Med Biol 551: 45–51, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Issa FG, Remmers JE. Identification of a subsurface area in the ventral medulla sensitive to local changes in PCO2. J Appl Physiol 72: 439–446, 1992.PubMedGoogle Scholar
  7. 7.
    Ribas-Salgueiro JL, Gaytán SP, Crego R, Pásaro R, Ribas J. Highly H+-sensitive neurons in the caudal ventrolateral medulla of the rat. J Physiol 549: 181–194, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Fukuda Y, Honda Y. pH-sensitive cells at ventrolateral surface of rat medulla oblongata. Nature 256: 317–318, 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    Dean JB, Bayliss DA, Erikson JT, Lawing WL, Millhorn DE. Depolarization and stimulation of neurons in the nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36: 207–216, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Okada Y, Mückenhoff K, Scheid P. Hypercapnia and medullary neurons in the isolated brain stem-spinal cord of the rat. Respir Physiol 93: 327–336, 1993.PubMedCrossRefGoogle Scholar
  11. 11.
    Richerson GB. Response to CO2 of neurons in the rostral ventral medulla in vitro. J Neurophysiol 73: 933–944, 1995.PubMedGoogle Scholar
  12. 12.
    Kawai A, Ballantyne D, Mückenhoff K, Scheid P. Chemosensitive medullary neurones in the brainstem-spinal cord preparation of the neonatal rat. J Physiol 492: 277–292, 1996.PubMedGoogle Scholar
  13. 13.
    Oyamada, Y, Ballantyne D, Mückenhoff K, Schied P. Respiration-modulated membrane potential and chemosensitivity of locus ceruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol 513: 381–398, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    Sato M, Severinghous JW, Basbaum AI. Medullary CO2 chemoreceptor neuron identification by c-fos immunocytochemistry. J Appl Physiol 73: 96–100, 1992.PubMedGoogle Scholar
  15. 15.
    Teppema LJ, Berkenbosch A, Veening JG, Olievier CN. Hypercapnia induces c-fos expression in neurons of retrotrapezoid nucleus in cats. Brain Res 635: 353–356, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Haxhiu MA, Yung K, Erokwu B, Cherniack NS. CO2-induced c-fos expression in the CNS catecholaminergic neurons. Respir Physiol 105: 35–45, 1996.PubMedCrossRefGoogle Scholar
  17. 17.
    Teppema LJ, Veening JG, Kranenburg A, Dahan A, Berkenbosch A, Olievier C. Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol 388: 169–190, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Okada Y, Chen Z, Jiang W, Kuwana S, Eldridge FL. Anatomical arrangement of hypercapnia-activated cells in the superficial ventral medulla of rats. J Appl Physiol 93: 427–439, 2002.PubMedGoogle Scholar
  19. 19.
    Fukuda Y, Honda Y, Schlaefke ME, Loeschcke H. Effect of H+ on the membrane potential of silent cells in the ventral and dorsal surface layers of the rat medulla in vitro. Pflügers Arch 376: 229–235, 1978.PubMedCrossRefGoogle Scholar
  20. 20.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360–1369, 2004.PubMedCrossRefGoogle Scholar
  21. 21.
    Weston MC, Stornetta RL, Guyenet PG. Glutamatergic neuronal projections from the marginal layer of the rostral ventral medulla to the respiratory centers in rats. J Comp Neurol 473: 73–85, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Oyamada Y, Yamaguchi K, Murai M, Ishizaka A, Okada Y. Potassium channels in the central control of breathing. Adv Exp Med Biol (in press)Google Scholar
  23. 23.
    Eldridge FL, Kiley JP, Millhorn DE. Respiratory effects of carbon dioxide-induced changes of medullary extracellular fluid pH in cats. J Physiol 355: 177–189, 1984.PubMedGoogle Scholar
  24. 24.
    Kiley JP, Eldridge FL, Millhorn DE. The roles of medullary extracellular and cerebrospinal fluid pH in control of respiration. Respir Physiol 59: 117–130, 1985.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuwana S, Natsui T. Effect of hypercapnic blood injection into the vertebral artery on the phrenic nerve activity in cats. Jpn J Physiol 37: 155–159, 1987.PubMedGoogle Scholar
  26. 26.
    Kuwana S, Natsui T. Respiratory responses to occlusion or hypercapnic blood injection of the anterior inferior cerebellar artery in cats. Jpn J Physiol 40: 225–242, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Bradley SR, Pieribone VA, Wang W, Severson CA, Jacobs RA, Richerson GB. Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nat Neurosci 5: 401–402, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Ichikawa K, Kuwana S, Arita H. ECF pH dynamics within the ventrolateral medulla: a microelectrode study. J Appl Physiol 67: 193–198, 1989.PubMedGoogle Scholar
  29. 29.
    Petrovicky P. Über die Glia marginalis und oberflächliche Nervenzellen im Hirnstamm der Katze. Z Anat Entwick 127: 221–231, 1968.CrossRefGoogle Scholar
  30. 30.
    Trouth CO, Odek-Ogunde M, Holloway JA. Morphological observations on superficial medullary CO2-chemosensitive areas. Brain Res 246: 35–45, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    Filiano JJ, Choi C, Kinney HC. Candidate cell populations for respiratory chemosensitive fields in the human infant medulla. J Comp Neurol 293: 448–465, 1990.PubMedCrossRefGoogle Scholar
  32. 32.
    Pan Y, Trouth CO, Douglas RM, Ting P. Age differences in choline acetyltrasferase, tyrsosine hydroxylase, and carbonic anhydrase neurons and opiate receptor binding at rat ventral brainstem. In Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure. Trouth CO, Millis RM, Kiwull-Schöne HF, Schläfke ME ed. Marcel Dekker, New York, pp563–588, 1995.Google Scholar
  33. 33.
    Hanson MA, Nye PC, Torrance RW. The location of carbonic anhydrase in relation to the blood-brain barrier at the medullary chemoreceptors of the cat. J Physiol 320: 113–125, 1981.PubMedGoogle Scholar
  34. 34.
    Adams JM, Banka C, Wojcicki WE, Roth AC. Carbon dioxide exchange across the walls of arterioles: implication for the location of the medullary chemoreceptors. Ann Biomed Eng 16: 311–322, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Solomon IC. Focal CO2H+ alters phrenic motor output response to chemical stimulation of cat pre-Bötzinger complex in vivo. J Appl Physiol 94: 2151–2157, 2003.PubMedGoogle Scholar
  36. 36.
    Ito Y, Oyamada Y, Okada Y, Hakuno H, Aoyama R, Yamaguchi K. Optical mapping of pontine chemosensitive regions of neonatal rat. Neurosci Lett 366: 103–106, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Dillon GH, Waldrop TG. Responses of feline caudal hypothalamic cardiorespiratory neurons to hypoxia and hypercapnia. Exp Brain Res 96: 260–272, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
    • 2
    • 3
    • 4
  1. 1.Department of MedicineKeio University Tsukigase Rehabilitation CenterShizuokaJapan
  2. 2.Department of PhysiologyTeikyo UniversityTokyoJapan
  3. 3.Department of Pulmonary Medicine, School of MedicineKeio UniversityTokyoJapan
  4. 4.Department of Biochemical and Analytical Pharmacology, GlaxoSmithKlineResearch Triangle ParkUSA

Personalised recommendations