Skip to main content

An Overview on the Homeostasis of Ca2+ in Chemoreceptor Cells of the Rabbit and Rat Carotid Bodies

  • Conference paper
THE ARTERIAL CHEMORECEPTORS

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 580))

Abstract

Carotid body (CB) chemoreceptors sense arterial PO2 and PCO2/pH becoming activated in hypoxic hypoxia and in all types of acidosis. The sensing structures in the CB are chemoreceptor cells (CBCC), which are connected synaptically with the sensory nerve endings of the carotid sinus nerve (CSN). In situations of hypoxia and acidosis, CBCC are activated and their rate of release of neurotransmitters (NT) increase, promoting an increase in the activity of the CSN and subsequent ventilatory and cardiovascular reflexes (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckler KJ, Vaughan-Jones RD. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476: 423–8, 1994.

    PubMed  CAS  Google Scholar 

  2. Dasso LL, Buckler KJ and Vaughan-Jones RD. Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in rat carotid body type I cells. J Physiol. 498: 327–38, 1997.

    PubMed  CAS  Google Scholar 

  3. Fidone S and Gonzalez C. Catecholamine synthesis in rabbit carotid body in vitro. J Physiol 333: 69–79, 1982.

    PubMed  CAS  Google Scholar 

  4. Fidone S, Gonzalez C and Yoshizaki K. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol 333: 93–110, 1982.

    PubMed  CAS  Google Scholar 

  5. Gonzalez C, Almaraz L, Obeso A and Rigual R. Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol Rev 74: 829–898, 1994.

    PubMed  CAS  Google Scholar 

  6. Gonzalez C, Rocher A and Zapata P. Quimiorreceptores arteriales: mecanismos celulares y moleculares de las funciones adaptativa y homeostática del cuerpo carotídeo. Rev. Neural. 36: 239–254, 2003.

    CAS  Google Scholar 

  7. Lopez-Lopez J.R and Peers, C. Electrical properties of chemoreceptor cells, In: The carotid body Chemoreceptors (Ed. C. González) Springer, NY. pp 65–77, 1997.

    Google Scholar 

  8. Montero M, Alonso MT, Albillos A, Garcia-Sancho J and Alvarez J. Mitochondrial Ca2+-induced Ca2+ release mediated by the Ca(2+) uniporter. Mol Biol Cell. 12: 63–71, 2001.

    PubMed  CAS  Google Scholar 

  9. Nelson EJ, Li CC, Bangalore R, Benson T, Kass RS and PM Hinkle. Inhibition of L-type calcium-channel activity by thapsigargin and 2, 5-t-butylhydroquinone, but not by cyclopiazonic acid. Biochem J. 302: 147–54, 1994.

    PubMed  CAS  Google Scholar 

  10. Obeso A, Rocher A, Fidone S and Gonzalez C. The role of dihydropyridine-sensitive Ca2+ channels in stimulus-evoked catecholamine release from chemoreceptor cells of the carotid body. Neuroscience 47: 463–472, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Rocher A, Geijo-Barrientos E, Caceres AI, Rigual R, Gonzalez and Almaraz L. Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. J Physiol. 562: 407–20, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Sasaki N, Dayanithi G and Shibuya I. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat. Cell Calcium. 37: 45–56, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Vazquez G, Wedel BJ, Aziz O, Trebak M and Putney JW Jr. The mammalian TRPC cation channels. Biochim Biophys Acta. 1742: 21–36, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Vicario I, Obeso A, Rocher A, Lopez-Lopez JR and Gonzalez C. Intracellular Ca2+ stores in chemoreceptor cells of the rabbit carotid body: significance for chemoreception. Am J Physiol Cell Physiol. 279: C51–61, 2000a.

    CAS  Google Scholar 

  15. Vicario I, Rigual R, Obeso A and Gonzalez C. Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro. Am J Physiol Cell Physiol. 278: C490–C499, 2000b.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

CONDE, S., CACERES, A., VICARIO, I., ROCHER, A., OBESO, A., GONZALEZ, C. (2006). An Overview on the Homeostasis of Ca2+ in Chemoreceptor Cells of the Rabbit and Rat Carotid Bodies. In: Hayashida, Y., Gonzalez, C., Kondo, H. (eds) THE ARTERIAL CHEMORECEPTORS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 580. Springer, Boston, MA. https://doi.org/10.1007/0-387-31311-7_33

Download citation

Publish with us

Policies and ethics