Advertisement

Differential Expression of Oxygen Sensitivity in Voltage-Dependent K Channels in Inbred Strains of Mice

  • TOSHIKI OTSUBO
  • SHIGEKI YAMAGUCHI
  • MARIKO OKUMURA
  • MACHIKO SHIRAHATA
Conference paper
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 580)

Abstract

Oxygen sensitivity of voltage-dependent K channels (Kv channels) in chemosensory glomus cells is responsible for hypoxic chemotransduction processes in the carotid body. Human studies in twins and in individuals over time suggest that hypoxic sensitivity of the carotid body is genetically controlled (Collins et al., 1978; Kawakami et al., 1982; Nishimura et al., 1991; Thomas et al., 1993). The concept is further confirmed in the studies using inbred strains of mice (Tankersley et al., 1994; Campen et al., 2004) and rats (Weil et al., 1998) which are genetically almost identical within a strain. In these studies, respiratory or cardiovascular responses to hypoxia vary among several strains, but are similar within a strain. Thus, some proteins which are differentially expressed in individuals due to genetic differences likely cause variable carotid body responses. We have hypothesized that differential expression of oxygensensitive Kv channels contributes to the differences in hypoxic sensitivity of DBA/2J and A/J strains of mice.

Keywords

Inbred Strain Carotid Body Krebs Solution Glomus Cell Oxygen Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campen M.J., Tagaito Y., Li J., Balbir A., Tankersley C.G., Smith P., Schwartz A., O'Donnell C.P., 2004. Phenotypic variation in cardiovascular responses to acute hypoxic and hypercapnic exposure in mice. Physiol. Genomics 20: 15–20.PubMedCrossRefGoogle Scholar
  2. Collins D.D., Scoggin C.H., Zwillich C.W., Weil J.V., 1978. Hereditary aspects of decreased hypoxic response. J. Clin. Invest. 62: 105–110.PubMedCrossRefGoogle Scholar
  3. Conforti L., Bodi I., Nisbet J.W., Millhorn D.E., 2000. O2-sensitive K+ channels: role of the Kvl.2-subunit in mediating the hypoxic response. J. Physiol. 524: 783–793.PubMedCrossRefGoogle Scholar
  4. Gribkoff V.K., Starrett J.E., Dworetzky S.I., 2001. Maxi-K potassium channels: Form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 7: 166–177.PubMedCrossRefGoogle Scholar
  5. Kawakami Y., Yoshikawa T., Shida A., Asanuma Y., Murao M., 1982. Control of breathing in young twins. J. Appl. Physiol. 52: 537–542.PubMedGoogle Scholar
  6. Meera P., Wallner M., Toro L., 2000. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. U S A 97: 5562–5567.PubMedCrossRefGoogle Scholar
  7. Nishimura M., Yamamoto M., Yoshioka A., Akiyama Y., Kishi F., Kawakami Y., 1991. Longitudinal analyses of respiratory chemosensitivity in normal subjects. Am. Rev. Respir. Dis. 143: 1278–1281.PubMedGoogle Scholar
  8. Orio P., Rojas P., Ferreira G., Latorre R., 2002. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol. Sci. 17: 156–161.PubMedGoogle Scholar
  9. Rubin A.E., Polotsky V.Y., Balbir A., Krishnan J.A., Schwartz A.R., Smith P.L., Fitzgerald R.S., Tankersley C.G., Shirahata M., O'Donnell C.P., 2003. Differences in sleep-induced hypoxia between A/J and DBA/2J mouse strains. Am. J. Resp. Crit. Care Med. 168: 1520–1527.PubMedCrossRefGoogle Scholar
  10. Sanchez D., Lopez-Lopez J.R., Perez-Garcia M.T., Sanz-Alfayate G., Obeso A, Ganfornina MD, Gonzalez C, 2002. Molecular identification of Kvalpha subunits that contribute to the oxygen-sensitive K+ current of chemoreceptor cells of the rabbit carotid body. J Physiol. 542: 369–382.PubMedCrossRefGoogle Scholar
  11. Shirahata M., Sham J.S., 1999. Roles of ion channels in carotid body chemotransmission of acute hypoxia. Jpn. J. Physiol. 49: 213–228.PubMedCrossRefGoogle Scholar
  12. Tankersley C.G., Fitzgerald R.S., Kleeberger S.R. (1994) Differential control of ventilation among inbred strains of mice. Am. J. Physiol. 267: R1371-7.PubMedGoogle Scholar
  13. Thomas D.A., Swaminathan S., Beardsmore C.S., McArdle E.K., MacFadyen U.M., Goodenough PC, Carpenter R, Simpson H (1993) Comparison of peripheral chemoreceptor responses in monozygotic and dizygotic twin infants. Am. Rev. Respir. Dis. 148: 1605–1609.PubMedGoogle Scholar
  14. Weiger T.M., Holmqvist M.H., Levitan I.B., Clark F.T., Sprague S., Huang W.J., Ge P., Wang C., Lawson D., Jurman M.E., Glucksmann M.A., Silos-Santiago I, DiStefano PS, Curtis R, 2000. A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20: 3563–3570.PubMedGoogle Scholar
  15. Weil J.V., Stevens T., Pickett C.K., Tatsumi K., Dickinson M.G., Jacoby C.R., Rodman D.M 1998. Strain-associated differences in hypoxic chemosensitivity of the carotid body in rats. Am. J. Physiol. 274: L767–L774.PubMedGoogle Scholar
  16. Yamaguchi S., Balbir A., Schofield B., Coram J., Tankersley C.G., Fitzgerald R.S., O'Donnell CP, Shirahata M. 2003, Structural and functional differences of the carotid body between DBA/2J and A/J strains of mice. J. Appl. Physiol. 94: 1536–1542.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • TOSHIKI OTSUBO
    • 1
  • SHIGEKI YAMAGUCHI
    • 1
  • MARIKO OKUMURA
    • 1
  • MACHIKO SHIRAHATA
    • 1
  1. 1.Department of Environmental Health ScienceJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations