Advertisement

Acute Hypoxic Regulation of Recombinant THIK-1 Stably Expressed in HEK293 Cells

  • IAN M. FEARON
  • VERONICA A. CAMPANUCCI
  • STEPHEN T. BROWN
  • KRISTIN HUDASEK
  • ITA M. O’KELLY
  • COLIN A. NURSE
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 580)

Abstract

Hypoxic inhibition of O2-sensitive K+ channels plays a key role in mediating numerous cellular responses which counteract the deleterious effects of hypoxia. In type I cells of the carotid body (CB), a neurosecretory organ that responds to hypoxia by releasing neurotransmitters from specialized O2-sensing type I cells onto sensory nerve endings, hypoxic inhibition of K+ channels underlies the membrane depolarisation (Lopez-Barneo et al., 1988) that stimulates Ca2+ entry and neurotransmitter release (Urena et al., 1994). In other neurosecretory cells, such as those located in the neuroepithelial cell bodies of the lung (Youngson et al., 1993) and the adrenal medulla (Thompson and Nurse, 1998), hypoxic inhibition of K+ channels provides a critical link between O2 levels and the appropriate cellular responses.

Keywords

HEK293 Cell Carotid Body Acute Hypoxia Cerebellar Granule Neuron Glossopharyngeal Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckler KJ, Williams BA and Honore E (2000). An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525, 135–142.PubMedCrossRefGoogle Scholar
  2. Campanucci VA, Fearon IM and Nurse CA (2003). A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance. J Physiol 548, 731–743.PubMedCrossRefGoogle Scholar
  3. Campanucci VA and Nurse CA (2005). Biophysical characterization of whole-cell currents in O2-sensitive neurons from the rat glossopharyngeal nerve. Neuroscience 132, 437–51.PubMedCrossRefGoogle Scholar
  4. Goldstein SA, Bockenhauer D, O'Kelly I and Zilberberg N (2001). Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2: 175–184, 2001.PubMedCrossRefGoogle Scholar
  5. Kemp PJ, Lewis A, Hartness ME, Searle GJ, Miller P, O'Kelly I and Peers C (2002). Airway chemotransduction: from oxygen sensor to cellular effector. Am J Respir Crit Care Med 166, S17–S24.PubMedCrossRefGoogle Scholar
  6. Lewis A, Hartness ME, Chapman CG, Fearon IM, Meadows HJ, Peers C and Kemp PJ (2001). Recombinant hTASK1 is an O2-sensitive K+ channel. Biochem Biophys Res Commun 285, 1290–1294.PubMedCrossRefGoogle Scholar
  7. Lopez-Barneo J, Lopez-Lopez JR, Urena J and Gonzalez C (1988). Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241, 580–582.PubMedCrossRefGoogle Scholar
  8. Miller P, Kemp PJ, Lewis A, Chapman CG, Meadows HJ and Peers C (2003). Acute hypoxia occludes hTREK-1 modulation: re-evaluation of the potential role of tandem P domain K+ channels in central neuroprotection. J Physiol 548, 31–37.PubMedGoogle Scholar
  9. O'Kelly I, Stephens RH, Peers C, Kemp PJ (1999). Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol 276, L96–L104.PubMedGoogle Scholar
  10. Peers C (1990). Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+ -activated K+current. Neurosci Lett 119, 253–256.PubMedCrossRefGoogle Scholar
  11. Plant LD, Kemp PJ, Peers C, Henderson Z and Pearson HA (2002). Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 33, 2324–2328.PubMedCrossRefGoogle Scholar
  12. Rajan S, Wischmeyer E, Karschin C, Preisig-Muller R, Grzeschik KH, Daut J, Karschin A and Derst C (2001). THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276, 7302–7311.PubMedCrossRefGoogle Scholar
  13. Thompson RJ and Nurse CA (1998). Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J Physiol 512, 421–434.PubMedCrossRefGoogle Scholar
  14. Urena J, Fernandez-Chacon R, Benot AR, Alvarez de Toledo GA and Lopez-Barneo J (1994). Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci USA 91, 10208–10211.PubMedCrossRefGoogle Scholar
  15. Wang ZZ, Stensaas LJ, Bredt DS, Dinger B and Fidone SJ (1994) Localization and actions of nitric oxide in the cat carotid body. Neurosci 60, 275–286.CrossRefGoogle Scholar
  16. Wang ZZ, Stensaas LJ, Dinger BG and Fidone SJ (1995). Nitric oxide mediates chemoreceptor inhibition in the cat carotid body. Neurosci 65, 217–229.CrossRefGoogle Scholar
  17. Wyatt CN and Buckler KJ (2004). The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556, 175–191.PubMedCrossRefGoogle Scholar
  18. Youngson C, Nurse C, Yeger H and Cutz E (1993). Oxygen sensing in airway chemoreceptors. Nature 365, 153–155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • IAN M. FEARON
    • 2
  • VERONICA A. CAMPANUCCI
    • 3
  • STEPHEN T. BROWN
    • 1
  • KRISTIN HUDASEK
    • 1
  • ITA M. O’KELLY
    • 2
  • COLIN A. NURSE
    • 1
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada
  2. 2.Faculty of Life SciencesThe University of ManchesterManchesterUK
  3. 3.Department of PhysiologyMcGill UniversityMontréalCanada

Personalised recommendations