Advertisement

Hypoxemia and Attenuated Hypoxic Ventilatory Responses in Mice Lacking Heme Oxygenase-2

Evidence for a Novel Role of Heme Oxygenase-2 as an Oxygen Sensor
  • YONGZHAO ZHANG
  • KAZUMICHI FURUYAMA
  • TETSUYA ADACHI
  • KAZUNOBU ISHIKAWA
  • HAYATO MATSUMOTO2
  • TAKAYUKI MASUDA
  • KAZUHIRO OGAWA
  • KAZUHISA TAKEDA
  • MIKI YOSHIZAWA
  • HIROMASA OGAWA
  • YUKIO MARUYAMA
  • WATARU HIDA
  • SHIGEKI SHIBAHARA
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 580)

Abstract

All nucleated cells depend on heme for their survival, as heme senses or uses oxygen. In fact, heme is a prosthetic moiety of various hemoproteins such as hemoglobin, myoglobin, and cytochromes. Accordingly, heme must be synthesized and degraded within an individual cell, because heme cannot be recycled among different cells, except for senescent erythrocytes, which are phagocytosed by macrophages in the reticuloendothelial system (for review, Shibahara, 2003). Heme, derived from hemoproteins, is broken down by heme oxygenase, which catalyzes the oxidative breakdown of heme, generating biliverdin, carbon monoxide (CO), and iron (Fig. 1). These heme degradation products are important bioactive molecules (For review, Shibahara, 2003 and references therein). Bilirubin functions as a chain-breaking antioxidant. CO represents a direct marker for heme catabolism, and binds to hemoglobin to form carboxyhemoglobin, which is transported to the lungs and is excreted in exhaled air. CO has received much attention because of its physiological functions similar to those of NO. Iron is transported to the entire tissues, especially bone marrow, and is reutilized for erythropoiesis and heme biosynthesis.

Keywords

Pulmonary Vein Heme Oxygenase Pulmonary Artery Smooth Muscle Cell Hypoxic Ventilatory Response A549 Human Lung Cancer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi T., Ishikawa K., Hida W., Matsumoto H., Masuda T., Date F., Ogawa K., Takeda K., Furuyama K., Zhang Y., Kitamuro T., Ogawa H., Maruyama Y., Shibahara S. Hypoxemia and blunted hypoxic ventilatory responses in mice lacking heme oxygenase-2. Biochem. Biophys. Res. Commun. 320: 514–522, 2004.PubMedCrossRefGoogle Scholar
  2. Burnett A.L., Johns D.G., Kriegsfeld L.J., Klein S.L., Calvin D.C., Demas G.E., Schramm L.P., Tonegawa S., Nelson R.J., Snyder S.H., Poss K.D. Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase-2. Nat. Med. 4: 84–87, 1998.PubMedCrossRefGoogle Scholar
  3. Dennery P.A., Spitz D.R., Yang G., Tatarov A., Lee C.S., Shegog M.L., Poss K.D. Oxygen toxicity and iron accumulation in the lungs of mice lacking heme oxygenase-2, J. Clin. Invest. 101: 1001–1011, 1998.PubMedCrossRefGoogle Scholar
  4. Ishikawa K., Takeuchi N., Takahashi S., Matera K.M., Sato M., Shibahara S., Rousseau D.L., Ikeda-Saito M., Yoshida T. Heme oxygenase-2. Properties of the heme complex and purified tryptic peptide of human heme oxygenase-2 expressed in Escherichia coli. J. Biol. Chem., 270: 6345–6350, 1995.PubMedCrossRefGoogle Scholar
  5. Kemp P.J., Lewis A., Hartness M.E., Searle G.J., Miller P, O'Kelly I., Peers C. Airway chemotransduction: from oxygen sensor to cellular effector, Am. J. Respir. Crit. Care Med. 166: S17–S24, 2002.PubMedCrossRefGoogle Scholar
  6. Kitamuro T., Takahashi K., Ogawa K., Udono-Fujimori R., Takeda K., Furuyama K., Nakayama M., Sun J., Fujita H., Hida W., Hattori T., Shirato K., Igarashi K., Shibahara S. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 278: 9125–9133, 2003.PubMedCrossRefGoogle Scholar
  7. Klavins J.V. Demonstration of striated muscle in the pulmonary veins of the rat, J. Anat. 97: 239–341, 1963.PubMedGoogle Scholar
  8. Maines M.D., Trakshel G.M., Kutty R.K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible, J. Biol. Chem. 261: 411–419, 1986.PubMedGoogle Scholar
  9. McCoubrey W.K. Jr., Ewing J.F., Maines M.D. Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal. Arch. Biochem. Biophys. 295: 13–20, 1992.PubMedCrossRefGoogle Scholar
  10. McCoubrey W.K. Jr., Huang T.J., Maines M.D. Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. J. Biol. Chem. 272: 12568–12574, 1997.PubMedCrossRefGoogle Scholar
  11. Mizusawa A., Ogawa H., Kikuchi Y., Hida W., Kurosawa H., Okabe S., Takishima T., Shirato K. In vivo release of glutamate in the nucleus tractus solitarius of rat during hypoxia, J. Physiol. (London) 478: 55–65, 1994.Google Scholar
  12. Nakayama M., Takahashi K., Kitamuro T., Yasumoto K., Katayose D., Shirato K., Fujii-Kuriyama Y., Shibahara S. Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells. Biochem. Biophys. Res. Commun. 271: 665–671, 2000.PubMedCrossRefGoogle Scholar
  13. Poss K.D., Thomas M.J., Ebralidze A.K., O'Dell T.J., Tonegawa S. Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron 15: 867–873, 1995.PubMedCrossRefGoogle Scholar
  14. Poss K.D., Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 94: 10919–10924, 1997.PubMedCrossRefGoogle Scholar
  15. Prabhakar N.R. Endogenous carbon monoxide in control of respiration, Respir. Physiol. 114: 57–64, 1998.PubMedCrossRefGoogle Scholar
  16. Shibahara S. The heme oxygenase dilemma in cellular homeostasis: New insights for the feedback regulation of heme catabolism. (Invited Review) Tohoku J. Exp. Med. 200: 167–186, 2003.CrossRefGoogle Scholar
  17. Shibahara S., Muller R.M., Taguchi H. Transcriptional control of rat heme oxygenase by heat shock. J. Biol. Chem. 262: 12889–12892, 1987.PubMedGoogle Scholar
  18. Shibahara S., Yoshizawa M., Suzuki H., Takeda K., Meguro K., Endo K. Functional analysis of cDNAs for two types of human heme oxygenase and evidence for their separate regulation. J. Biochem. 113: 214–218, 1993.PubMedGoogle Scholar
  19. Takahashi K., Hara E., Suzuki H., Shibahara S. Expression of heme oxygenase isozyme mRNAs in the human brain and induction of heme oxgenase-1 by nitric oxide donors. J. Neurochem. 67: 482–489, 1996.PubMedCrossRefGoogle Scholar
  20. Takahashi K., Nakayama M., Takeda K., Fujita H., Shibahara, S. Suppression of heme oxygenase-1 mRNA expression by interferon-γ in human glioblastoma cells. J. Neurochem. 72: 2356–2361, 1999.PubMedCrossRefGoogle Scholar
  21. Takeda K, Ishizawa S, Sato M, Yoshida T, Shibahara S. Identification of a cis-acting element that is responsible for cadmium-mediated induction of the human heme oxygenase. J. Biol. Chem. 269: 22858–22867, 1994.PubMedGoogle Scholar
  22. Wagenvoort C. A., Wagenvoort N. Pulmonary venous changes in chronic hypoxia, Virchows Arch. A Pathol. Anat. Histol. 372 : 51–56, 1976.PubMedCrossRefGoogle Scholar
  23. Williams S.E., Wootton P., Mason H.S., Bould J., Iles D.E., Riccardi D., Peers C., Kemp P.J. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306: 2093–2097, 2004.PubMedCrossRefGoogle Scholar
  24. Yoshida T., Biro P., Cohen T., Muller R.M., Shibahara S. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171: 457–461, 1988.PubMedCrossRefGoogle Scholar
  25. Youngson C., Nurse C., Yeger H., Cutz E. Oxygen sensing in airway chemoreceptors, Nature 365: 153–155, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • YONGZHAO ZHANG
    • 1
  • KAZUMICHI FURUYAMA
    • 1
  • TETSUYA ADACHI
    • 1
  • KAZUNOBU ISHIKAWA
    • 2
  • HAYATO MATSUMOTO2
    • 2
  • TAKAYUKI MASUDA
    • 3
  • KAZUHIRO OGAWA
    • 4
  • KAZUHISA TAKEDA
    • 1
  • MIKI YOSHIZAWA
    • 1
  • HIROMASA OGAWA
    • 5
  • YUKIO MARUYAMA
    • 2
  • WATARU HIDA
    • 6
  • SHIGEKI SHIBAHARA
    • 1
  1. 1.1Department of Molecular Biology and Applied PhysiologyTohoku University School of MedicineSendaiJapan
  2. 2.First Department of Internal MedicineFukushima Medical UniversityFukushimaJapan
  3. 3.Division of Pathology, School of Health SciencesTohoku UniversitySendaiJapan
  4. 4.4Laboratory of Molecular PharmacologyTohoku University School of MedicineSendaiJapan
  5. 5.Department of Cardiovascular MedicineTohoku University School of MedicineSendaiJapan
  6. 6.Health Administration CenterTohoku UniversitySendaiJapan

Personalised recommendations