Advertisement

The Effect of Development on the Pattern of A1 and A2a-Adenosine Receptor Gene and Protein Expression in Rat Peripheral Arterial Chemoreceptors

  • ESTELLE B. GAUDA
  • REED Z. COOPER
  • DAVID F. DONNELLY
  • ARIEL MASON
  • GABRIELLE L. McLEMORE
Part of the ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY book series (AEMB, volume 580)

Abstract

The peripheral arterial chemoreceptors in the carotid body (CB) are the first step in a closed–loop feedback control system that acts to normalize arterial oxygen and carbon dioxide levels by rapidly modulating ventilation. Type I cells in the CB are excitable and contain O2 - sensitive K+ channels (Gonzalez et al., 1995; Montoro et al., 1996; Wyatt et al., 1995). Reduction of K+ conductance in response to hypoxia is the signal that triggers Type I cell depolarization, Ca2+ entry, and secretion of neurotransmitters that bind to receptors on the first order sensory nerve endings of the carotid sinus nerve with cell bodies in the petrosal ganglion {(Gonzalez et al., 1994;Gonzalez et al., 1992). These first order sensory neurons (chemoafferents) project to second order neurons within the nucleus tractus solitarii (nTS), which send projections to the muscles of respiration. While the cascade of molecular and cellular events occurs in multiple CB preparations from multiple mammalian species, key aspects of the cascade are still unknown, particularly identification of the specific oxygen sensor within the Type I cell that initiates the cascade and the specific excitatory neurotransmitter systems that are involved in chemoexcitation. Furthermore, in multiple immature mammalian species, including human infants, hypoxic chemosensitivity matures during the first several weeks of postnatal life. Specific mechanisms mediating that maturation are unknown.

Keywords

Carotid Body Nucleus Tractus Solitarii Postnatal Development Carotid Sinus Nerve Carotid Body Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fink, J.S., Weaver, D.R., Rivkees, S.A., Peterfreund, R.A., Pollack, A.E., Adler, E.M., & Reppert, S.M. 1992, Molecular cloning of the rat A2 adenosine receptor: selective co- expression with D2 dopamine receptors in rat striatum. Brain Res. Mol. Brain Res., 14, 186–195.PubMedCrossRefGoogle Scholar
  2. Fredholm, B.B., Arslan, G., Halldner, L., Kull, B., Schulte, G., & Wasserman, W. 2000, Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch.Pharmacol., 362, 364–374.PubMedCrossRefGoogle Scholar
  3. Gauda, E.B., Northington, F.J., Linden, J., & Rosin, D.L. 2000, Differential expression of A2A, A1-adenosine and D2-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res., 872, 1–10.PubMedCrossRefGoogle Scholar
  4. Gonzalez, C., Almaraz, L., Obeso, A., & Rigual, R. 1992, Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci., 15, 146–153.PubMedCrossRefGoogle Scholar
  5. Gonzalez, C., Dinger, B. G., & Fidone, S.J. (1994) Mechanisms of carotid body chemoreception. Regulation of Breathing (ed. by J. A. Dempsey & A. I. Pack), pp. 391–470. Marcel Dekker, Inc.Google Scholar
  6. Gonzalez, C., Lopez-Lopez, J. R., Obeso, A., Perez-Garcia, M.T., & Rocher, A. 1995, Cellular mechanisms of oxygen chemoreception in the carotid body. Respir. Physiol, 102, 137–147.PubMedCrossRefGoogle Scholar
  7. Kobayashi, S., Conforti, L., & Millhorn, D.E. 2000, Gene expression and function of adenosine A2A receptor in the rat carotid body. Am. J. Physiol Lung Cell Mol. Physiol, 279, L273–L282.PubMedGoogle Scholar
  8. McQueen, D.S. & Ribeiro, J.A. 1981, Effect of adenosine on carotid chemoreceptor activity in the cat. British Journal Of Pharmacology, 74, 129–136.PubMedGoogle Scholar
  9. Monteiro, E. C. & Ribeiro, J.A. 1987, Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn Schmiedebergs Arch. Pharmacol, 335, 143–148.PubMedCrossRefGoogle Scholar
  10. Monteiro, E.C. & Ribeiro, J.A. 1989, Adenosine deaminase and adenosine uptake inhibitions facilitate ventilation in rats. Naunyn Schmiedebergs Arch. Pharmacol., 340, 230–238.PubMedCrossRefGoogle Scholar
  11. Montoro, R.J., Urena, J., Fernandez-Chacon, R., Alvarez, T., & Lopez-Barneo, J. 1996, Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen.Physiol, 107, 133–143.PubMedCrossRefGoogle Scholar
  12. Runold, M., Lagercrantz, H, Prabhakar N.R., & Fredholm B.B. Role of adenosine in hypoxic ventilatory depression. J Appl Physiol [2], 541–546. 1989. Ref Type: Journal (Full)Google Scholar
  13. Runold, M., Cherniack, N.S., & Prabhakar, N.R. 1990, Effect of adenosine on isolated and superfused cat carotid body activity. Neuroscience Letters, 113, 111–114.PubMedCrossRefGoogle Scholar
  14. Weaver, D.R. 1996, A1-adenosine receptor gene expression in fetal rat brain. Developmental Brain Research, 94, 205–223.PubMedGoogle Scholar
  15. Wyatt, C.N., Wright, C., Bee, D., & Peers, C. 1995, O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc. Natl. Acad. Sci. U.S.A, 92, 295–299.PubMedCrossRefGoogle Scholar
  16. Zimmermann, H. & Braun, N. 1996, Extracellular metabolism of nucleotides in the nervous system. J. Auton. Pharmacol., 16, 397–400.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • ESTELLE B. GAUDA
    • 1
  • REED Z. COOPER
    • 1
  • DAVID F. DONNELLY
    • 2
  • ARIEL MASON
    • 1
  • GABRIELLE L. McLEMORE
    • 1
  1. 1.Department of PediatricsDivision of Neonatology Johns Hopkins Medical Institutions.Baltimore
  2. 2.Department of Pediatric Pulmonary MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations