Changes in Antioxidant Protein SP-22 of Chipmunk Carotid Bodies during the Hibernation Season

  • YI WU


Hibernators survive repeated cycles of torpor and arousal during the hibernation season. During torpor, hibernating animals drastically reduce their heart rate, respiratory rate, body temperature, blood flow and oxygen consumption; however, during periodic arousal, this suppressed physiological state rapidly surges and returns to euthermy (Daan, 1991; Waßmer et al., 1997; Fukuhara et al., 2003; 2004).


Brown Adipose Tissue Ground Squirrel Carotid Body Small Blood Vessel Torpor Bout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki M, Nanri H, Ejima K, Murasato Y, Fujiwara T, Nakashima Y, Ikeda M (1999) Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J Biol Chem 274: 2271–8PubMedCrossRefGoogle Scholar
  2. Buzadzic B, Spasic M, Saicic ZS, Radojicic R, Petrovic VM, Halliwell B (1990) Antioxidant defenses in the ground squirrel (Citellus citellus). 2. The effect of hibernation. Free Radic Biol Med.9: 407–13.PubMedCrossRefGoogle Scholar
  3. Carey HV and Andrews MT and Martun SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83: 1153–81PubMedGoogle Scholar
  4. Carey HV, Sills NS, Gorham DA (1999) Stress proteins in mammalian hibernation. Am Zool 39: 825–835Google Scholar
  5. Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128: 265–268PubMedCrossRefGoogle Scholar
  6. Drew KL, Osborne PG, Frerichs KU, Hu Y, Hallenbeck JM and Rice ME (1999) Ascorbate and glutathione regulation in hibernating ground squirrels. Brain Res 851: 1–8PubMedCrossRefGoogle Scholar
  7. Drew KL, Toien O, Rivera PM, Smith MA, Perry G, Rice ME (2002) Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comp Biochem Physiol C Toxicol Pharmacol 133: 483–92PubMedCrossRefGoogle Scholar
  8. Fukuhara K, Senoo H, Yoshizaki K, Ohtomo K. (2003) Immunohistochemical study of the carotid body just after arousal from hibernation. Adv Exp Med Biol 536: 619–28PubMedGoogle Scholar
  9. Fukuhara K, Yoshizaki K, Wu Y, Senoo H, Ohtomo K (2004) Immunohistochemical and morphological changes in chipmunk carotid body during hibernation. Akita J Med 31: 71–81Google Scholar
  10. Hermes-Lima M, Zenteno-Savin T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol. 133: 537–56PubMedCrossRefGoogle Scholar
  11. Kusakabe T, Hirakawa H, Oikawa S, Matsuda H, Kawakami T, Takenaka T, Hayashida Y (2004) Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia. Histol Histopathol 19: 1133–40PubMedGoogle Scholar
  12. Lee M, Choi I, Park K (2002) Activation of stress signaling molecules in bat brain during arousal from hibernation. J Neurochem 82: 867–73PubMedCrossRefGoogle Scholar
  13. Lundberg JM, Hokfelt T, Fahrenkrug J, Nilsson G, Terenius L (1979) Peptides in the cat carotid body (glomus caroticum): VIP-, enkephalin-, and substance P-like immunoreactivity. Acta Physiol Scand 107: 279–281PubMedGoogle Scholar
  14. Malatesta M, Battistelli S, Rocchi MB, Zancanaro C, Fakan S, Gazzanelli G (2001) Fine structural modifications of liver, pancreas and brown adipose tissue mitochondria from hibernating, arousing and euthermic dormice. Cell Biol Int 25: 131–8PubMedCrossRefGoogle Scholar
  15. Oomori Y, Nakaya K, Tanaka H, Iuchi H, Ishikawa K, Satoh Y, Ono K (1994) Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma-aminobutyric acid in chief cells of the mouse carotid body. Cell Tissue Res 278: 249–254PubMedGoogle Scholar
  16. Pallot DJ (1987) The mammalian carotid body. Adv Anat Embryol Cell Biol 102: 1–91PubMedGoogle Scholar
  17. Shibata E, Nanri H, Ejima K, Araki M, Fukuda J, Yoshimura K, Toki N, Ikeda M, Kashimura M (2003) Enhancement of mitochondrial oxidative stress and up-regulation of antioxidant protein peroxiredoxin III/SP-22 in the mitochondria of human pre-eclamptic placentae. Placenta 24: 698–705PubMedCrossRefGoogle Scholar
  18. Toien O, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 281: R572–83)Google Scholar
  19. Wang LCH (1988) Mammalian hibernation: An escape from the cold. In: Advances in Comparative and Environmental Physiology (Gilles R, ed.), Berlin, Springer, Vol 2, pp 1–45Google Scholar
  20. Wang LCH (1978) Time patterns and metabolic rates of natural torpor in the Richardson's ground squirrel. Can J Zool 57: 149–155CrossRefGoogle Scholar
  21. Waβmer T, Wollnik F (1997) Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L). J Comp Physiol B 167: 270–279CrossRefGoogle Scholar
  22. Watabe S, Kohno H, Kouyama H, Hiroi T, Hasegawa H, Yago N, Nakazawa T (1994) Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J Biochem (Tokyo) 115: 648–654Google Scholar
  23. Watabe S, Hasegawa H, Takimoto K, Yamamoto Y, Takahashi SY (1995) Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger. Biochem Biophys Res Commun 213: 1010–1016PubMedCrossRefGoogle Scholar
  24. Zancanaro C, Malatesta M Vogel P Fakan S (1997) Ultrastructure of the adrenal cortex of hibernating, arousing, and euthermic dormouse, Muscardinus avellanarius. Anat Rec 249: 359–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
  • YI WU
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Division of Cell Biology and Histology, Department of Anatomy and BiochemistryAkita University School of MedicineAkitaJapan
  2. 2.Department of Biology, School of Biology and Chemistry EngineeringGuangzhou UniversityChina
  3. 3.Department of Nutritional Sciences, Faculty of Health and WelfareSeinan-Jogakuin UniversityKitakyusyu
  4. 4.Department of Health DevelopmentUniversity of Occupational and Environmental HealthKitakyusyu
  5. 5.International Buddhist University,International Buddhist UniversityOsaka
  6. 6.Department of PhysiologyAkita University School of Health SciencesAkitaJapan
  7. 7.Department of AnatomyAkita University School of Health SciencesAkitaJapan

Personalised recommendations