Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1173 Accesses

Abstract

Myosin filaments of insect indirect flight muscles (IFM) are 17 to 19 nm thick and 1.9 to 3.6 μm long structures with probably 4 cross-bridges per level (= crown). These crowns repeat in periods of 14.5 nm along the longitudinal axis of the filament. The cross-bridges are located at 4 helical tracks with axial spacings of 38.7 nm and a true axial repeat of 116 nm on the surface of the filaments. Twelve myosin subfilaments, arranged in pairs, run parallel to the longitudinal filament axis and form a wall around a myosin-free filament core. The core may be filled by additional elements, the number of which is related to the paramyosin content of the filaments.

Aggregates of peptide fragments representing the C-terminal two-thirds of Drosophila light meromyosin with the exon-19 encoded C-terminus display 116 nm repeating units with substructured elements of 43.5-29-14.5-29 nm in width. Optical diffraction patterns of these aggregates show layer line characteristics that resemble those of negatively stained, isolated thick filaments. These results suggest that the IFM specific cross-bridge pattern results from the aggregation properties of insect myosin. Filament models, based on these properties are consistent with electron microscopy and X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beinbrech G, Meller U, Sasse W. Paramyosin content and thick filament structure in insect muscles. Cell Tissue Res 1985; 241:607–614.

    Article  CAS  Google Scholar 

  2. Sotavalta O. Recordings of the high wing-stroke and thoracic vibration frequency in some midges. Biol Bull 1953; 104:439–444.

    Article  Google Scholar 

  3. Reedy MK. Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol 1968; 31:155–176.

    Article  PubMed  CAS  Google Scholar 

  4. Trombitas K, Tigyi-Sebes A. Structure of thick filaments from insect flight muscle. Acta Biochim Biophys Hungaricae 1986; 21:115–128.

    CAS  Google Scholar 

  5. Wray JS. Filament geometry and the activation of insect flight muscles. Nature 1979; 280:325–326.

    Article  Google Scholar 

  6. Reedy MK, Bahr GF, Fishman DA. How many myosins per cross-bridge? Flight muscle myofibrils from the blowfly, Sarcophaga bullata. Cold Spring Harbor Symp Quant Biol 1973; 37:397–422.

    CAS  Google Scholar 

  7. Tregear RT, Squire JM. Myosin content and filament structure in smooth and striated muscle. J Mol Biol 1973; 77:279–290.

    Article  PubMed  CAS  Google Scholar 

  8. Morris EP, Squire JM, Fuller GW. The 4-stranded helical arrangement of myosin heads on insect (Lethocerus) flight muscle thick filaments. J Struct Biol 1991; 107:237–249.

    Article  Google Scholar 

  9. Schmitz H, Lucaveche C, Reedy MK et al. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys J 1994; 67:1620–1633.

    PubMed  CAS  Google Scholar 

  10. Kölsch B, Ziegler C, Beinbrech G. Length determination of synthetic thick filaments by cooperation of two myosin-associated proteins, paramyosin and projectin. Naturwiss 1995; 82:239–241.

    PubMed  Google Scholar 

  11. Bullard B. Contractile proteins of insect flight muscle. TIBS 1983; 8:68–70.

    CAS  Google Scholar 

  12. Reedy MK, Leonard KR, Freeman R et al. Thick myofilaments mass determination by electron scattering measurements with the scanning transmission electron microscope. J Muscle Res Cell Motil 1981; 2:45–64.

    Article  PubMed  CAS  Google Scholar 

  13. Wray JS. Structure of the backbone in myosin filaments of muscle. Nature 1979; 277:37–40.

    Article  PubMed  CAS  Google Scholar 

  14. Pepe FA, Ashton FT, Street C et al. The myosin filament X. Observation of nine subfilaments in transverse sections. Tissue Cell 1986; 18:499–508.

    Article  PubMed  CAS  Google Scholar 

  15. Beinbrech G, Ashton FT, Pepe FA. Invertebrate myosin filament: Subfilament arrangement in the wall of the solid filaments of insect flight muscles. Biophys J 1992; 61:1495–1512.

    Article  PubMed  CAS  Google Scholar 

  16. Beinbrech G, Ashton FT, Pepe FA. Invertebrate myosin filament: Subfilament arrangement in the wall of tubular filaments of insect flight muscles. J Mol Biol 1988; 201:557–565.

    Article  PubMed  CAS  Google Scholar 

  17. Schmitz H, Ashton FT, Pepe FA et al. Invertebrate myosin filament: Parallel subfilament arrangement in the wall of solid filaments from the honeybee, Apis mellifica. Tissue Cell 1993; 25:111–119.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitz H, Ashton FT, Pepe FA et al. Substructures in the core of thick filaments: Arrangement and number in relation to the paramyosin content of insect flight muscles. Tissue Cell 1994; 26:83–100.

    Article  PubMed  CAS  Google Scholar 

  19. Ader G, Pepe FA, Beinbrech G. Functional domains of Drosophila LMM affecting self assembly and paramyosin binding. J Muscle Res Cell Motility 1997; 18:246–247.

    Google Scholar 

  20. Ziegler C, Jurk K, Weitkamp B et al. In vitro interactions of proteins from insect myosin filaments. Biophysics 1996; 41:79–87.

    Google Scholar 

  21. Fährmann M, Fonk I, Beinbrech G. The kinase activity of the giant protein kinase projectin of the flight muscle of Locusta migratoria. Insect Biochem Mol Biol 2002; 32:1401–1407.

    Article  PubMed  Google Scholar 

  22. George EL, Ober MB, Emerson CPJ. Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternative spliced exons. Mol Cell Biol 1989; 9:2957–2974, (Published erratum Mol Cell Biol 1989; 9:4118).

    PubMed  CAS  Google Scholar 

  23. McLachlan AD, Karn J. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 1982; 299:226–231.

    Article  PubMed  CAS  Google Scholar 

  24. Reedy MK. Cross-bridges and periods in insect flight muscle. Am. Zoologist 1967; 7:465–481.

    Google Scholar 

  25. Squire JM. General model for the structure of all myosin-containing filaments. Nature 1971; 233:457–462.

    Article  PubMed  CAS  Google Scholar 

  26. Stewart M. Computer image processing of electron micrographs of biological structures with helical symmetry. J Electron Microsc Techn 1988; 9:325–358.

    Article  CAS  Google Scholar 

  27. Longley W. The packing of double helices. J Mol Biol 1975; 93:111–115.

    Article  PubMed  CAS  Google Scholar 

  28. Standiford DM, Davis MB, Miedema K et al. Myosin rod protein: A novel thick filament component of Drosophila muscle. J Mol Biol 1997; 265:40–55.

    Article  PubMed  CAS  Google Scholar 

  29. Polyak E, Standiford DM, Yakopson V et al. Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila. J Mol Biol 2003; 331:1077–1091.

    Article  PubMed  CAS  Google Scholar 

  30. Dufhues G, Philipp L, Ziegler C et al. The ATPase activity of actomyosin in the presence of C-protein and low paramyosin concentrations. Comp Biochem Physiol 1991; 99B:871–877.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Beinbrech, G., Ader, G. (2006). Structure of the Insect Thick Filaments. In: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-31213-7_8

Download citation

Publish with us

Policies and ethics