Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1169 Accesses

Abstract

The biochemical and mechanical basis of insect flight has captivated the interest of biologists for decades. This chapter presents a brief review of the approaches used and results obtained by investigators intent on understanding the chemomechanical basis of contraction in insect muscle. We are much closer now than we have ever been to understanding the details of the contractile mechanism. This has been in large measure due to the great expansion of tools available to us, and the increasing number of investigators interested in the problem. We start with an overview of the physical methods used to investigate the mechanical properties of insect flight muscle (the biochemical and single molecule methods are covered in the chapter by Sparrow/Geeves, this volume). The physical methods are largely based on analyzing the response in muscle force to perturbations in muscle length. Next, we present a contemporary view of the contractile mechanism, based on these methods. We discuss the role of myosin in relation to its interaction with actin and other proteins of the myofilament lattice, focusing on those factors that determine muscle kinetics. One of the distinguishing characteristics of insect musculature is the extremely wide range of contractile speeds displayed by a diverse set of muscle fiber types. The chemomechanics of Lethocerus and Drosophila flight muscle are discussed and compared, highlighting recent experiments designed to elucidate the role of specific structural regions of the Drosophila myosin heavy chain in setting muscle fiber kinetics. We conclude the chapter with a brief discussion of the highly specialized structural proteins ancillary to myosin and actin that enable the high power output required for flight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jewell BR, Ruegg JC. Oscillatory contraction of insect fibrillar muscle after glycerol extraction. Proc Roy Soc 1966; 164:428–459.

    CAS  Google Scholar 

  2. Machin KE, Pringle JWS. The physiology of insect fibrillar muscle II. Mechanical properties of a beetle flight muscle. Proc R Soc London Ser B 1959; 151:204–225.

    Google Scholar 

  3. Machin KE, Pringle JWS. The physiology of insect fibrillar muscle. III. The effect of sinusoidal changes of length on a beetle flight muscle. Proc R Soc 1960; (B)152:311–330.

    CAS  Google Scholar 

  4. Squire JM. The structural basis of muscular contraction. New York: Plenum, 1981.

    Google Scholar 

  5. Tregear RT. Physiology of insect flight muscle. Handbook Physiol 1983; 10:487–506.

    Google Scholar 

  6. Hill AV. The mechanics of active muscle. Proc R Soc Lond B Biol Sci 1953; 141(902):104–117.

    PubMed  CAS  Google Scholar 

  7. Linari M, Reedy MK, Reedy MC et al. Ca-activation and stretch-activation in insect flight muscle. Biophys J 2004; 87:1101–1111.

    Article  PubMed  CAS  Google Scholar 

  8. Peckham M, Molloy JE, Sparrow JC et al. Physiological properties of the dorsal longitudinal flight muscle and tergal depressor of the trochanter muscle of Drosophila melanogaster. J Mus Res Cell Motil 1990; 11:203–215.

    Article  CAS  Google Scholar 

  9. Machin KE. Feedback theory and its application to biological systems. Symp Soc Exp Biol 1964; 18:421–445.

    PubMed  CAS  Google Scholar 

  10. White DCS. The elasticity of relaxed insect fibrillar flight muscle. J Physiol 1983; 343:31–57.

    PubMed  CAS  Google Scholar 

  11. Granzier HLM, Wang K. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle: A functional dissection by gelsolin-mediated thin filament removal. J Gen Physiol 1993; 101:235–270.

    Article  PubMed  CAS  Google Scholar 

  12. Henkin JA, Maughan DW, Vigoreaux JO. Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flight muscle fibers. Am J Physiol Cell Physiol 2004; 286(1):C65–C72.

    Article  PubMed  CAS  Google Scholar 

  13. Maughan D, Moore J, Vigoreaux J et al. Work production and work absorption in muscle strips from vertebrate cardiac and insect flight muscle fibers. In: Sugi H, Pollack G, eds. Mechanism of Work Production and Work Absorption in Muscle. New York: Plenum Publishing Press, 1998:471–480.

    Google Scholar 

  14. Kawai M, Brandt PW. Sinsoidal analysis: A high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscle of rabbit, frog and crayfish. J Mus Res Cell Motil 1980; 1:279–303.

    Article  CAS  Google Scholar 

  15. Jewell BR, Wilkie DR. The mechanical properties of relaxing muscle. J Physiol 1960; 152:30–47.

    PubMed  CAS  Google Scholar 

  16. Edman KAP. Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol 1975; 246:255–275.

    PubMed  CAS  Google Scholar 

  17. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature London 1971; 233:533–538.

    Article  PubMed  CAS  Google Scholar 

  18. Ford LE, Huxley AF, Simmons RM. Proceedings: Mechanism of early tension recovery after a quick release in tetanized muscle fibres. J Physiol 1974; 240(2):42P–43P.

    PubMed  CAS  Google Scholar 

  19. Piazzesi G, Linari M, Lombardi V. Kinetics of regeneration of cross-bridge power stroke in shortening muscle. Adv Exp Med Biol 1993; 332:691–700.

    PubMed  CAS  Google Scholar 

  20. Abbott RH, Steiger GJ. Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. J Physiol 1977; 266:13–42.

    PubMed  CAS  Google Scholar 

  21. Guth K, Kuhn HJ, Tsuchiya T et al. Length dependent state of activation — length change dependent kenetics of cross bridges in skinned insect flight muscle. Biophys Struct Mech 1981; 7:139–169.

    Article  Google Scholar 

  22. Guth K, Poole KJV, Maughan D et al. The apparent rates of crossbridge attachment and detachment estimated from ATPase activity in insect flight muscle. Biophys J 1987; 52:1039–1045.

    PubMed  Google Scholar 

  23. Thorson J, White DCS. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J 1969; 9:360–390.

    PubMed  CAS  Google Scholar 

  24. Peterson JN, Nassar R, Anderson PA et al. Altered cross-bridge characteristics following haemodynamic overload in rabbit hearts expressing V3 myosin. J Physiol 2001; 536 (Pt 2):569–582.

    Article  PubMed  CAS  Google Scholar 

  25. Huxley AF. Muscle structure and theories of contraction. Progress in Biophysics 1957; 7:255–318.

    CAS  Google Scholar 

  26. Podolsky RJ. Kinetics of muscular contraction: The approach to the steady state. Nature 1960; 188:666–668.

    Article  PubMed  CAS  Google Scholar 

  27. Littlefield KP, Swank DM, Sanchez BM et al. The converter domain modulates kinetic properties of Drosophila myosin. Am J Physiol Cell Physiol 2003; 284(4):C1031–C1038.

    PubMed  CAS  Google Scholar 

  28. Chan WP, Dickinson MH. In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J Exp Biol 1996; 199(12):2767–2774.

    PubMed  CAS  Google Scholar 

  29. Steiger GJ, Ruegg JC. Energetics and “efficiency” in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation. Pflugers Arch 1969; 307(1):1–21.

    Article  PubMed  CAS  Google Scholar 

  30. White DCS, Thorson J. Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle. J Gen Physiol 1972; 60:307–336.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao Y, Kawai M. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. Elementary steps affected by the spacing change. Biophys J 1993; 64:197–210.

    PubMed  CAS  Google Scholar 

  32. Zhao Y, Kawai M. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 1994; 67:1655–1668.

    PubMed  CAS  Google Scholar 

  33. Wang G, Kawai M. Effects of MgATP and MgADP on the cross-bridge kinetics of rabbit soleus slow-twitch muscle fibers. Biophys J 1996; 71:1450–1461.

    PubMed  CAS  Google Scholar 

  34. Wang G, Kawai M. Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers. Biophys J 1997; 73(2):878–894.

    PubMed  CAS  Google Scholar 

  35. Mulieri LA, Barnes W, Leavitt BJ et al. Alterations of myocardial dynamic stiffness implicating abnormal crossbridge function in human mitral regurgitation heart failure. Circ Res 2002; 90(1):66–72.

    Article  PubMed  CAS  Google Scholar 

  36. Dickinson MH, Hyatt CJ, Lehmann F-O et al. Phosphorylation-dependent power output of trangenic flies: An integrated study. Biophys J 1997; 73:3122–3134.

    PubMed  CAS  Google Scholar 

  37. Blanchard E, Seidman C, Seidman J et al. Ca2+ sensitivity of isometric tension, oscillatory power, and complex stiffness parameters of cardiac muscle from an α-myosin heavy chain R403Q mouse model of human familial hypertrophic cardiomyopathy. Circ Res 1999; 84(4):475–483.

    PubMed  CAS  Google Scholar 

  38. Heinl P, Kuhn HJ, Ruegg JC. Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. J Physiology 1974; 237(2):243–258.

    CAS  Google Scholar 

  39. Taylor EW. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem 1979; 6(2):103–164.

    PubMed  Google Scholar 

  40. Cooke R. Actomyosin interaction in striated muscle. Physiol Rev 1997; 77(3):671–697.

    PubMed  CAS  Google Scholar 

  41. Dantzig JA, Goldman YE, Millar NC et al. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 1992; 451:247–278.

    PubMed  CAS  Google Scholar 

  42. Millar NC, Homsher E. Kinetics of force generation and phosphate release in skinned rabbit soleus muscle fibers. Am J Physiol 1992; 262(5 Pt 1):C1239–C1245.

    PubMed  CAS  Google Scholar 

  43. Geeves MA, Lehrer SS. Dynamics of the muscle thin filament regulatory switch: The size of the cooperative unit. Biophys J 1994; 67:273–282.

    PubMed  CAS  Google Scholar 

  44. Holmes KC, Angert I, Kull FJ et al. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 2003; 425(6956):423–427.

    Article  PubMed  CAS  Google Scholar 

  45. Rayment I, Rypniewski WR, Schmidt-Base K et al. Three-dimensional structure of myosin subfragment-1: A molecular motor. Science 1993; 261:50–58.

    Article  PubMed  CAS  Google Scholar 

  46. Tyska MJ, Warshaw DM. The myosin power stroke. Cell Motil Cytoskeleton 2002; 51(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  47. Agianian B, Krzic U, Qiu F et al. A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO J 2004; 23(4):772–779.

    Article  PubMed  CAS  Google Scholar 

  48. Tregear RT, Reedy MC, Goldman YE et al. Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys J 2004; 86(5):3009–3019.

    PubMed  CAS  Google Scholar 

  49. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev 2000; 80(2):853–924.

    PubMed  CAS  Google Scholar 

  50. Palmer BM. Intermittant attachment and Hookian stiffness of myosin-actin interactions predict phases 1 and 2 of a step response and the C-process of sinusoidal analysis. Biophys J 2003; 84(2):248a.

    Google Scholar 

  51. Marcussen BL, Kawai M. Role of MgATP and inorganic phosphate ions in cross-bridge kinetics in insect (Lethocerus colossicus) flight muscle. Prog Clin Biol Res 1990; 327:805–813.

    PubMed  CAS  Google Scholar 

  52. Yamakawa M, Goldman YE. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle. J Gen Physiol 1991; 98(4):657–679.

    Article  PubMed  CAS  Google Scholar 

  53. Goldman YE. Kinetics of the actomyosin ATPase in muscle fibers. Annu Rev Physiol 1987; 49:637–654.

    Article  PubMed  CAS  Google Scholar 

  54. Lund J, Webb MR, White DCS. Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange. J Biol Chem 1987; 263:5505–5511.

    Google Scholar 

  55. Abbott RH, Mannherz GH. Activation by ADP and the correlation between tension and ATPase activity in insect fibrillar muscle. Pflugers Arch 1970; 321(3):223–232.

    Article  PubMed  CAS  Google Scholar 

  56. George EL, Ober MB, Emerson CP. Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol Cell Biol 1989; 9:2957–2974.

    PubMed  CAS  Google Scholar 

  57. Rozek CE, Davidson N. Drosophila has one myosin heavy-chain gene with three developmentally regulated transcripts. Cell 1983; 32(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  58. Hastings KE, Emerson Jr CP. cDNA clone analysis of six coregulated mRNAs encoding skeletal muscle contractile proteins. Proc Natl Acad Sci USA 1982; 79(5):1553–1557.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang S, Bernstein SI. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev 2001; 101(1–2):35–45.

    Article  PubMed  CAS  Google Scholar 

  60. Wells L, Edwards KA, Bernstein SI. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J 1996; 15(17):4454–4459.

    PubMed  CAS  Google Scholar 

  61. Swank DM, Knowles AF, Suggs JA et al. The myosin converter domain modulates muscle performance. Nat Cell Biol 2002; 4(4):312–316.

    Article  PubMed  CAS  Google Scholar 

  62. Swank DM, Bartoo ML, Knowles AF et al. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J Biol Chem 2001; 276(18):15117–15124.

    Article  PubMed  CAS  Google Scholar 

  63. Holmes KC, Schroder RR. Switch 1 opens on strong binding to actin. Molecular and cellular aspects of muscle contraction. Adv Exp Med Biol 2003; 538:159–166.

    PubMed  CAS  Google Scholar 

  64. Swank DM, Kronert WA, Maughan DW et al. Alternative versions of the myosin relay loop influence Drosophila muscle kinetics. Biophys J 2004; 86(1):656a.

    Google Scholar 

  65. Swank DM, Knowles AF, Kronert WA et al. Variable N-terminal regions of muscle myosin heavy chain modulate ATPase rate and actin sliding velocity. J Biol Chem 2003; 278(19):17475–17482.

    Article  PubMed  CAS  Google Scholar 

  66. Swank DM, Maughan DW. Rates of force generation in Drosophila fast and slow muscle types have opposite responses to phosphate. In: Sugi H, ed. Molecular and Cellular Aspects of Muscle Contraction. New York: Kluwer Academic /Plenum Publishers, 2003:459–468.

    Google Scholar 

  67. Miller BM, Nyitrai M, Bernstein SI et al. Kinetic analysis of Drosophila muscle myosin isoforms suggests a novel mode of mechanochemical coupling. J Biol Chem 2003; 278(50):50293–50300.

    Article  PubMed  CAS  Google Scholar 

  68. Rome LC, Cook C, Syme DA et al. Trading force for speed: Why superfast crossbridge kinetics leads to superlow forces. Proc Natl Acad Sci USA 1999; 96(10):5826–5831.

    Article  PubMed  CAS  Google Scholar 

  69. Rome LC, Lindstedt SL. The quest for speed: Muscles built for high-frequency contractions. News Physiol Sci 1998; 13:261–268.

    PubMed  Google Scholar 

  70. Tohtong R, Yamashita M, Graham M et al. Impairment of flight ability and flight muscle function caused by mutations of phosphorylation sites of myosin regulatory light chain in Drosophila. Nature 1995; 374:650–653.

    Article  PubMed  CAS  Google Scholar 

  71. Irving TC, Maughan DW. In vivo X-ray diffraction of indirect flight muscle from Drosophila melanogaster. Biophys J 2000; 78(5):2511–2515.

    PubMed  CAS  Google Scholar 

  72. Bhandari DG, Levine BA, Trayer IP et al. 1H-NMR study of mobility and conformational constraints within the proline-rich N-terminal of the LC1 alkali ligth chain of skeletal myosin. Correlation with similar segments in other protein systems. Eur J Biochem 1986; 160(2):349–356.

    Article  PubMed  CAS  Google Scholar 

  73. Sweeney HL. Function of the N Terminus of the myosin essential light chain of vertebrate striated muscle. Biophys J 1995; 68:112s–119s.

    PubMed  CAS  Google Scholar 

  74. Fewell JG, Hewett TE, Sanbe A et al. Functional significance of cardiac myosin essential light chain isoform switching in transgenic mice. J Clin Invest 1998; 101:2630–2639.

    Article  PubMed  CAS  Google Scholar 

  75. Irving T, Bhattacharya S, Tesic I et al. Changes in myofibrillar structure and function produced by N-terminal deletion of the regulatory light chain in Drosophila. J Muscle Res Cell Motil 2001; 22(8):675–683.

    Article  PubMed  CAS  Google Scholar 

  76. Moore JR, Dickinson MH, Vigoreaux JO et al. The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle. Biophys J 2000; 78(3):1431–1440.

    PubMed  CAS  Google Scholar 

  77. Prince HP, Trayer HR, Henry GD et al. Proton nuclear-magnetic-resonance spectroscopy of myosin subfragment 1 isoenzymes. Eur J Biochem 1981; 121(1):213–219.

    Article  PubMed  CAS  Google Scholar 

  78. Trayer IP, Trayer HR, Levine BA. Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin: A proton magnetic resonance study. Eur J Biochem 1987; 164:259–266.

    Article  PubMed  CAS  Google Scholar 

  79. Sutoh K. Identification of myosin binding sites on the actin sequence. Am Chem Soc 1982; 21(15):3654–3661.

    CAS  Google Scholar 

  80. Andreev OA, Saraswat LD, Lowey S et al. Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin. Biochemistry 1999; 38(8):2480–2485.

    Article  PubMed  CAS  Google Scholar 

  81. Hao Y, Miller MS, Swank DM et al. Mutation of paramyosin phosphorylation sites affects the passive stiffness of Drosophila indirect flight muscle. Biophys J 2004; 86(1):184a.

    Google Scholar 

  82. Reedy MC, Bullard B, Vigoreaux JO. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol 2000; 151(7):1483–1500.

    Article  PubMed  CAS  Google Scholar 

  83. Saide JD, Chin-Bow S, Hogan-Sheldon J et al. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J Cell Biol 1989; 109(5):2157–2167.

    Article  PubMed  CAS  Google Scholar 

  84. Kulke M, Neagoe C, Kolmerer B et al. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. J Cell Biol 2001; 154(5):1045–1057.

    Article  PubMed  CAS  Google Scholar 

  85. Bullard B, Linke WA, Leonard K. Varieties of elastic protein in invertebrate muscles. J Muscle Res Cell Motil 2002; 23(5–6):435–447.

    Article  PubMed  Google Scholar 

  86. Granzier HLM, Wang K. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: The contribution of weak cross-bridges and elastic filaments. Biophys J 1993; 65:2141–2159.

    Article  PubMed  CAS  Google Scholar 

  87. Cammarato A, Hatch V, Saide J et al. Drosophila muscle regulation characterized by electron microscopy and three-dimensional reconstruction of thin filament mutants. Biophys J 2004; 86(3):1618–1624.

    PubMed  CAS  Google Scholar 

  88. Kreuz AJ, Simcox A, Maughan D. Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants. J Cell Biol 1996; 135(3):673–687.

    Article  PubMed  CAS  Google Scholar 

  89. Bernstein SI, Milligan RA. Fine tuning a molecular motor: The location of alternative domains in the Drosophila myosin head. J Mol Biol 1997; 271(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  90. Clayton JD, Cripps RM, Sparrow JC et al. Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 1998; 19(2):117–127.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Maughan, D., Swank, D. (2006). Insect Flight Muscle Chemomechanics. In: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-31213-7_20

Download citation

Publish with us

Policies and ethics