Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Insect flight muscles contract at high frequencies and are activated by periodically stretching the muscles. For the stretch to have an effect, the muscles must be stiff. Two elastic proteins, projectin and kettin, are responsible for a large part of the muscle stiffness. Thin filaments containing actin emerge from Z-discs, which occur at periodic intervals along the myofibril, and thick filaments containing myosin interdigitate with the thin filaments. Both projectin and kettin form a mechanical link between the Z-discs and the ends of thick filaments. Kettin is made up of immunoglobulin-like (Ig) modules separated by linker sequences, and is associated with actin in the region of the Z-disc. The protein is an isoform derived from the Drosophila sallimus (sls) gene. Longer isoforms from the sls gene have additional, more extensible, sequence and these are found in non-flight muscles that are less stiff. Isoforms of the protein Sls have several different functions. Kettin causes thin filaments to align side-by-side in an anti-parallel fashion, which could nucleate Z-disc formation in developing myofibrils. Kettin is in the enlarged Z-discs close to the site of attachment of myofibrils to the cuticle, and may reinforce actin filaments in this region, giving the structure the required stiffness.

Sls appears early in development of the Drosophila embryo and is needed for fusion of myoblasts to form myotubes which will become muscle fibres. Sls is associated with the membrane at the site of myoblast fusion, together with other proteins (Duf and Rols) that are needed for fusion.

The elastic properties of single molecules of kettin have been measured using optical tweezers. The Ig domains unfold at relatively low stretching forces and refold at high forces. This suggests that kettin could be a folding-based spring, which may be relevant to its function in early muscle development, as well as in the adult myofibril.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White DC. The elasticity of relaxed insect fibrillar flight muscle. J Physiol 1983; 343:31–57.

    PubMed  CAS  Google Scholar 

  2. Kulke M, Neagoe C, Kolmerer B et al. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. J Cell Biol 2001; 154:1045–1057.

    Article  PubMed  CAS  Google Scholar 

  3. Bullard B, Linke WA, Leonard K. Varieties of elastic protein in invertebrate muscles. J Muscle Res Cell Motil 2002; 23:435–447.

    Article  PubMed  Google Scholar 

  4. Ayme-Southgate A, Vigoreaux J, Benian G et al. Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc Natl Acad Sci USA 1991; 88:7973–7977.

    Article  PubMed  CAS  Google Scholar 

  5. Fyrberg CC, Labeit S, Bullard B et al. Drosophila projectin: Relatedness to titin and twitchin and correlation with lethal(4)102 CDa and bent-dominant mutants. Proc R Soc Lond B Biol Sci 1992; 249:33–40.

    Article  CAS  Google Scholar 

  6. Southgate R, Ayme-Southgate A. Alternative splicing of an amino-terminal PEVK-like region generates multiple isoforms of Drosophila projectin. J Mol Biol 2001; 313(5):1035–1043.

    Article  PubMed  CAS  Google Scholar 

  7. Lakey A, Labeit S, Gautel M et al. Kettin, a large modular protein in the Z-disc of insect muscles. EMBO J 1993; 12:2863–2871.

    PubMed  CAS  Google Scholar 

  8. Hakeda S, Endo S, Saigo K. Requirements of Kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J Cell Biol 2000; 148:101–114.

    Article  PubMed  CAS  Google Scholar 

  9. Kolmerer B, Clayton J, Benes V et al. Sequence and expression of the kettin gene in Drosophila melanogaster and Caenorhabditis elegans. J Mol Biol 2000; 296(2):435–448.

    Article  PubMed  CAS  Google Scholar 

  10. Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 1998; 141:321–333.

    Article  PubMed  CAS  Google Scholar 

  11. Machado C, Andrew DJ. D-Titin: A giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000; 151:639–652.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Featherstone D, Davis W et al. Drosophila D-titin is required for myoblast fusion and skeletal muscle striation. J Cell Sci 2000; 113(Pt 17):3103–3115.

    PubMed  CAS  Google Scholar 

  13. van Straaten M, Goulding D, Kolmerer B et al. Association of kettin with actin in the Z-disc of insect flight muscle. J Mol Biol 1999; 285:1549–1562.

    Article  PubMed  Google Scholar 

  14. Bang ML, Mudry RE, McElhinny AS et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 2001; 153:413–427.

    Article  PubMed  CAS  Google Scholar 

  15. Bullard B, Hååg P, Brendel S et al. Mapping kettin and D-titin in the invertebrate sarcomere. J Mus Res Cell Motil 2002; 22:602.

    Google Scholar 

  16. Reedy MC, Beall C. Ultrastructure of developing flight muscle in Drosophila. II. Formation of the myotendon junction. Dev Biol 1993; 160(2):466–479.

    Article  PubMed  CAS  Google Scholar 

  17. Fyrberg E, Kelly M, Ball E et al. Molecular genetics of Drosophila alpha-actinin: Mutant alleles disrupt Z disc integrity and muscle insertions. J Cell Biol. 1990; 110(6):1999–2011.

    Article  PubMed  CAS  Google Scholar 

  18. Hartenstein V. Atlas of Drosophila development. In: Bate M, Martinez Arias A, eds. The Development of Drosophila melanogaster Vol II. Plainview, New York: Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  19. Bate M. The mesoderm and its derivatives. In: Bate M, Martinez Arias A, eds. The Development of Drosophila melanogaster. Vol II. Plainview, New York: Cold Spring Harbor Laboratory Press, 1993:1013–1090.

    Google Scholar 

  20. Taylor MV. Muscle differentiation: How two cells become one. Curr Biol 2002; 12(6):R224–228.

    Article  PubMed  CAS  Google Scholar 

  21. Bate M. The embryonic development of larval muscles in Drosophila. Development 1990; 110:791–804.

    PubMed  CAS  Google Scholar 

  22. Ruiz-Gomez M, Coutts N, Price A et al. Drosophila dumbfounded: A myoblast attractant essential for fusion. Cell 2000; 102(2):189–198.

    Article  PubMed  CAS  Google Scholar 

  23. Bour BA, Chakravarti M, West JM et al. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 2000; 14(12):1498–1511.

    PubMed  CAS  Google Scholar 

  24. Frasch M, Leptin M. Mergers and acquisitions: Unequal partnerships in Drosophila myoblast fusion. Cell 2000; 102(2):127–129.

    Article  PubMed  CAS  Google Scholar 

  25. Dworak HA, Charles MA, Pellerano LB et al. Characterization of Drosophila hibris, a gene related to human nephrin. Development 2001; 128(21):4265–4276.

    PubMed  CAS  Google Scholar 

  26. Menon SD, Chia W. Drosophila Rolling pebbles: A multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev Cell 2001; 1(5):691–703.

    Article  PubMed  CAS  Google Scholar 

  27. Furlong EE, Andersen EC, Null B et al. Patterns of gene expression during Drosophila mesoderm development. Science 2001; 293(5535):1629–1633.

    Article  PubMed  CAS  Google Scholar 

  28. Artero R, Furlong EE, Beckett K et al. Notch and Ras signaling pathway effector genes expressed in fusion competent and founder cells during Drosophila myogenesis. Development 2003; 130(25):6257–6272.

    Article  PubMed  CAS  Google Scholar 

  29. Leake MC, Wilson D, Bullard B et al. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett 2003; 535(1–3):55–60.

    Article  PubMed  CAS  Google Scholar 

  30. Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996; 271(5250):795–799.

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Linke WA, Oberhauser AF et al. Reverse engineering of the giant muscle protein titin. Nature 2002; 418(6901):998–1002.

    Article  PubMed  CAS  Google Scholar 

  32. Watanabe K, Mühle-Goll C, Kellermayer MS et al. Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segments. J Struct Biol 2002; 137(1–2):248–258.

    Article  PubMed  CAS  Google Scholar 

  33. Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 2003; 13(16):1365–1377.

    Article  PubMed  CAS  Google Scholar 

  34. Scott IC, Stainier DY. Developmental biology: Twisting the body into shape. Nature 2003; 425(6957):461–463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Bullard, B., Leake, M.C., Leonard, K. (2006). Some Functions of Proteins from the Drosophila sallimus (sls) Gene. In: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-31213-7_14

Download citation

Publish with us

Policies and ethics