Skip to main content

The Contributions of Genetics to the Study of Insect Flight Muscle Function

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The utility of Drosophila as a model genetic organism has had a profound impact upon our understanding of muscle assembly and function. This has arisen from the large number of mutant alleles that have been isolated and characterized using a variety of screens, and also reflects an highly efficient method for generating transgenic animals. Combining these two methodologies has permitted genetic rescue experiments using both wild-type and engineered alleles, to probe precisely the functions of proteins or their domains in myofibril assembly and contractility. Genetical approaches using suppressor screens are now being used to more precisely determine protein function in the myofibril. In this review I shall summarize how these approaches have been informative in understanding muscle formation and function, and discuss how Drosophila genetics will serve the muscle field in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson P. Molecular genetics of nematode muscle. Ann Rev Genet 1989; 23:507–525.

    Article  PubMed  CAS  Google Scholar 

  2. Epstein HF. Genetic analysis of myosin assembly in Caenorhabditis elegans. Mol Neurobiol 1990; 4:1–25.

    PubMed  CAS  Google Scholar 

  3. Hoppe PE, Waterston RH. A region of the myosin rod important for interaction with Paramyosin in Caenorhabditis elegans striated muscle. Genetics 2000; 156:631–643.

    PubMed  CAS  Google Scholar 

  4. Hotta Y, Benzer S. Mapping of behaviour in Drosophila mosaics. Nature 1972; 240:527–535.

    Article  PubMed  CAS  Google Scholar 

  5. Benzer S. Genetic dissection of behavior. Sci Amer 1973; 229:24–37.

    Article  PubMed  CAS  Google Scholar 

  6. Koana T, Hotta Y. Isolation and characterization of flightless mutants in Drosophila melanogaster. J Embryol Exp Morphol 1978; 45:123–143.

    PubMed  CAS  Google Scholar 

  7. Sheppard DE. A selective procedure for the separation of flightless adults from normal flies. Drosophila Inform Serv 1974; 51:150.

    Google Scholar 

  8. Homyk Jr T, Sheppard DE. Behavioral mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability. Genetics 1977; 87:95–104.

    PubMed  Google Scholar 

  9. Nongthomba U, Ramachandra NB. A direct screen identifies new flight muscle mutants on the Drosophila second chromosome. Genetics 1999; 153:261–274.

    PubMed  CAS  Google Scholar 

  10. Deak II. Mutations of Drosophila melanogaster that affect muscles. J Embryol Exp Morphol 1977; 40:35–63.

    PubMed  CAS  Google Scholar 

  11. Homyk Jr T. Behavioral mutants of Drosophila melanogaster. II. Behavioral analysis and focus mapping. Genetics 1977; 87:105–128.

    PubMed  Google Scholar 

  12. Mogami K, Hotta Y. Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol Gen Genet 1981; 183:409–417.

    Article  PubMed  CAS  Google Scholar 

  13. Mogami K, Fujita SC, Hotta Y. Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis. J Biochem 1982; 91:643–650.

    PubMed  CAS  Google Scholar 

  14. Bernstein SI, O’Donnell PT, Cripps RM. Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int Rev Cytol 1993; 143:63–151.

    Article  PubMed  CAS  Google Scholar 

  15. Vigoreaux JO. Genetics of the Drosophila flight muscle myofibril: A window into the biology of complex systems. BioEssays 2001; 23:1047–1063.

    Article  PubMed  CAS  Google Scholar 

  16. Cripps RM, Ball E, Stark M et al. Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 1994; 137:151–164.

    PubMed  CAS  Google Scholar 

  17. Bernstein SI, Mogami K, Donady J et al. Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. Nature 1983; 302:393–397.

    Article  PubMed  CAS  Google Scholar 

  18. Karlik CC, Fyrberg EA. An insertion within a variably spliced Drosophila tropomyosin gene blocks accumulation of only one encoded isoform. Cell 1985; 41:57–66.

    Article  PubMed  CAS  Google Scholar 

  19. Karlik CC, Coutu MD, Fyrberg EA. A nonsense mutation within the Act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles. Cell 1984; 38:711–719.

    Article  PubMed  CAS  Google Scholar 

  20. Warmke JW, Kreuz AJ, Falkenthal S. Colocalization to chromosome bands 99E1–3 of the Drosophila melanogaster Myosin light chain-2 gene and a halpoinsufficient locus that affects flight behavior. Genetics 1989; 122:139–151.

    PubMed  CAS  Google Scholar 

  21. Hakeda S, Endo S, Saigo K. Requirements of Kettin, a giant muscle protein highly conserved in overall structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J Cell Biol 2000; 148:101–114.

    Article  PubMed  CAS  Google Scholar 

  22. Kolmerer B, Clayton J, Benes V et al. Sequence and expression of the kettin gene in Drosophila melanogaster and Caenorhabditis elegans. J Mol Biol 2000; 296:435–448.

    Article  PubMed  CAS  Google Scholar 

  23. Ayme-Southgate A, Vigoreaux J, Benian G et al. Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc Natl Acad Sci USA 1991; 88:7973–7977.

    Article  PubMed  CAS  Google Scholar 

  24. Fyrberg CC, Labeit S, Bullard B et al. Drosophila projectin: Relatedness to titin and twitchin and correlation with lethal(4)102Cda and bent-Dominant mutations. Proc R Soc Lond B 1992; 249:33–40.

    Article  CAS  Google Scholar 

  25. Becker KD, O’Donnell PT, Heitz JM et al. Analysis of Drosophila paramyosin: Identification of a novel isoform which is restricted to a subset of adult muscles. J Cell Biol 1992; 116:669–681.

    Article  PubMed  CAS  Google Scholar 

  26. Liu H, Mardahl-Dumesnil M, Sweeney ST et al. Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation. J Cell Biol 2003; 160:899–908.

    Article  PubMed  CAS  Google Scholar 

  27. Kreuz AJ, Simcox A, Maughan D. Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants. J Cell Biol 1996; 135:673–687.

    Article  PubMed  CAS  Google Scholar 

  28. Tetzlaff MT, Jackle H, Pankratz MJ. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation. EMBO J 1996; 15:1247–1254.

    PubMed  CAS  Google Scholar 

  29. Reedy MC, Bullard B, Vigoreaux JO. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol 2000; 151:1483–1499.

    Article  PubMed  CAS  Google Scholar 

  30. Deak II, Bellamy PR, Bienz M et al. Mutations affecting the indirect flight muscles of Drosophila melanogaster. J Embryol Exp Morphol 1992; 69:61–81.

    Google Scholar 

  31. Chun M, Falkenthal S. Ifm(2)2 is a Myosin heavy chain allele that disrupts myofibrillar assembly only in the indirect flight muscle of Drosophila melanogaster. J Cell Biol 1988; 107:2613–2621.

    Article  PubMed  CAS  Google Scholar 

  32. Mahaffey JW, Coutu MD, Fyrberg EA et al. The flightless Drosophila mutant raised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscles. Cell 1985; 40:101–110.

    Article  PubMed  CAS  Google Scholar 

  33. Beall CJ, Fyrberg EA. Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol 1991; 114:941–951.

    Article  PubMed  CAS  Google Scholar 

  34. O’Donnell PT, Collier VL, Mogami K et al. Ultrastructural and molecular analyses of homozygous-viable Drosophila melanogaster muscle mutants indicate there is a complex pattern of myosin heavy-chain isoform distribution. Genes Dev 1989; 3:1233–1246.

    Article  PubMed  CAS  Google Scholar 

  35. Collier VL, Kronert WA, O’Donnell PT et al. Alternative myosin hinge regions are utilized in a tissue-specific fashion that correlates with muscle contraction speed. Genes Dev 1990; 4:885–895.

    Article  PubMed  CAS  Google Scholar 

  36. Beall CJ, Sepanski MA, Fyrberg EA. Genetic dissection of Drosophila myofibril formation: Effects of actin and myosin heavy chain null alleles. Genes Dev 1989; 3:131–140.

    Article  PubMed  CAS  Google Scholar 

  37. O’Donnell PT, Bernstein SI. Molecular and ultrastructural defects in a Drosophila myosin heavy chain mutant: Differential effects on muscle function produced by similar thick filament abnormalities. J Cell Biol 1988; 107:2601–2612.

    Article  PubMed  CAS  Google Scholar 

  38. Warmke J, Yamakawa M, Molloy J et al. Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila. J Cell Biol 1992; 119:1523–1539.

    Article  PubMed  CAS  Google Scholar 

  39. Drummond DR, Peckham M, Sparrow JC et al. Alteration in crossbridge kinetics caused by mutations in actin. Nature 1990; 348:440–442.

    Article  PubMed  CAS  Google Scholar 

  40. Cripps RM, Becker KD, Mardahl M et al. Transformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: Rescue of mutant phenotypes and analysis of defects caused by overexpression. J Cell Biol 1994; 126:689–699.

    Article  PubMed  CAS  Google Scholar 

  41. Sparrow JC, Drummond DR, Hennessey ES et al. Drosophila actin mutants and the study of myofibrillar assembly and function. In: el Haj A, ed. Molecular Biology of Muscle. Soc Exp Biol Symp 1992; 46:111–129.

    Google Scholar 

  42. Fyrberg EA, Fyrberg CC, Biggs JR et al. Functional nonequivalence of Drosophila actin isoforms. Biochem Genet 1998; 36:271–287.

    Article  PubMed  CAS  Google Scholar 

  43. Wells L, Edwards KA, Bernstein SI. Myosin heavy chain isoforms regulate muscle function but not muscle assembly. EMBO J 1996; 15:4454–4459.

    PubMed  CAS  Google Scholar 

  44. Miller RC, Schaaf R, Maughan DW et al. A nonflight muscle isoform of Drosophila tropomyosin rescues an indirect flight muscle tropomyosin mutant. J Muscle Res Cell Motil 1993; 14:85–98.

    Article  PubMed  CAS  Google Scholar 

  45. Cripps RM, Suggs JA, Bernstein SI. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J 1999; 18:1793–1804.

    Article  PubMed  CAS  Google Scholar 

  46. Moerman DG, Plurad S, Waterston RH. Mutation in the unc-54 myosin heavy chain gene of Caenorhabditis elegans that alter contractility but not muscle structure. Cell 1982; 29:773–781.

    Article  PubMed  CAS  Google Scholar 

  47. Epstein HF, Bernstein SI. Genetic approaches to understanding muscle development. Dev Biol 1992; 154:231–244.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrús A, Acebes A, Marin MC et al. A genetic approach to detect muscle protein interactions in vivo. Trends Cardiovasc Med 2000; 10:293–298.

    Article  PubMed  Google Scholar 

  49. Homyk Jr T, Emerson Jr CP. Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics 1988; 119:105–121.

    PubMed  Google Scholar 

  50. Naimi B, Harrison A, Cummins M et al. A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila. Mol Biol Cell 2001; 12:1529–1539.

    PubMed  CAS  Google Scholar 

  51. Prado A, Canal I, Barbas JA et al. Functional recovery of troponin I in a Drosophila heldup mutant after a second site mutation. Mol Biol Cell 1995; 6:1433–1441.

    PubMed  CAS  Google Scholar 

  52. Kronert WA, Acebes A, Ferrús A et al. Specific myosin heavy chain mutations suppress troponin I defects in Drosophila muscles. J Cell Biol 1999; 144:989–1000.

    Article  PubMed  CAS  Google Scholar 

  53. Nongthomba U, Cummins M, Clark S et al. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 2003; 164:209–222.

    PubMed  CAS  Google Scholar 

  54. Reedy MC. Reedy MK, Leonard KR et al. Gold/Fab immuno electron microscopy localization of troponin H and troponin T in Lethocerus flight muscle. J Mol Biol 1994; 239:53–67.

    Article  Google Scholar 

  55. Ashman K, Houthaeve T, Clayton J et al. The application of robotics and mass spectrometry to the characterization of the Drosophila melanogaster indirect flight muscle proteome. Lett Peptide Science 1997; 4:57–65.

    CAS  Google Scholar 

  56. Schmitz S, Schankin CJ, Prinz H et al. Molecular evolutionary convergence of the flight muscle protein arthrin in Diptera and Hemiptera. Mol Biol Evol 2003; 20:2019–2033.

    Article  PubMed  CAS  Google Scholar 

  57. Yu B, French JA, Carrier L et al. Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene. J Med Genet 1998; 35:205–210.

    Article  PubMed  CAS  Google Scholar 

  58. Thierfelder L, Watkins H, MacRae C et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell 1994; 77:701–712.

    Article  PubMed  Google Scholar 

  59. Adams MD, Celniker SE, Holt RA et al. The genome of Drosophila melanogaster. Science 2000; 287:2185–2195.

    Article  PubMed  Google Scholar 

  60. Kennison JA, Tamkun JW. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc Natl Acad Sci USA 1988; 85:8136–8140.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang Y, Featherstone D, Davis W et al. Drosophila D-titin is required for myoblast fusion and skeletal muscle striation. J Cell Sci 2000; 113:3103–3115.

    PubMed  CAS  Google Scholar 

  62. Ayme-Southgate A, Southgate R, Saide J et al. Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bent locus product) contain functional kinase domains. J Cell Biol 1995; 128:393–403.

    Article  PubMed  CAS  Google Scholar 

  63. George EL, Ober MB, Emerson Jr CP. Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol Cell Biol 1989; 9:2957–2974.

    PubMed  CAS  Google Scholar 

  64. Rozek CE, Davidson N. Differential processing of RNA transcribed from the single-copy Drosophila Myosin heavy-chain gene produces four messenger RNAs that encode two polypeptides. Proc Natl Acad Sci USA 1986; 83:2128–2132.

    Article  PubMed  CAS  Google Scholar 

  65. Kazzaz JA, Rozek CE. Tissue-specific expression of the alternatively processed Drosophila myosin heavy-chain messenger RNAs. Dev Biol 1989; 133:550–561.

    Article  PubMed  CAS  Google Scholar 

  66. Hastings GA, Emerson Jr CP. Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila. J Cell Biol 1991; 114:263–276.

    Article  PubMed  CAS  Google Scholar 

  67. Kronert WA, Edwards KA, Roche ES et al. Muscle-specific accumulation of Drosophila myosin heavy chains: A splicing mutation in an alternative exon results in an isoform substitution. EMBO J 1991; 10:2479–2488.

    PubMed  CAS  Google Scholar 

  68. Saide JD, Chin-Bow S, Hogan-Sheldon J et al. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J Cell Biol 1989; 109:2157–2167.

    Article  PubMed  CAS  Google Scholar 

  69. Fyrberg E, Kelly M, Ball E et al. Molecular genetics of Drosophila alpha-actinin: Mutant alleles disrupt Z disc integrity and muscle insertions. J Cell Biol 1990; 110:1999–2011.

    Article  PubMed  CAS  Google Scholar 

  70. Vigoreaux JO, Saide JD, Pardue ML. Structurally different Drosophila striated muscles utilize distinct variants of Z-band-associated proteins. J Muscle Res Cell Motil 1991; 12:340–354.

    Article  PubMed  CAS  Google Scholar 

  71. Roulier EM, Fyrberg C, Fyrberg E. Perturbations of Drosophila alpha-actinin cause muscle paralysis, weakness, and atrophy but do not confer obvious nonmuscle phenotypes. J Cell Biol 1992; 116:911–922.

    Article  PubMed  CAS  Google Scholar 

  72. Homyk Jr T, Szidonya J, Suzuki DT. Behavioral mutants of Drosophila melanogaster III. Isolation and mapping of mutations by direct visual observation of behavioral phenotypes. Mol Gen Genet 1980; 177:553–565.

    Article  PubMed  Google Scholar 

  73. Perrimon N, Engstrom L, Mahowald AP. Developmental genetics of the 2C-D region of the Drosophila X chromosome. Genetics 1985; 111:23–41.

    PubMed  CAS  Google Scholar 

  74. Vinós J, Maroto M, Garesse R et al. Drosophila melanogaster paramyosin: Developmental pattern, mapping and properties deduced from its complete coding sequence. Mol Gen Genet 1992; 231:385–394.

    Article  PubMed  Google Scholar 

  75. Arrendondo JJ, Ferreres RM, Maroto M et al. Control of Drosophila paramyosin/miniparamyosin gene expression: Differential regulatory mechanisms for muscle-specific transcription. J Biol Chem 2001; 276:8278–8287.

    Article  Google Scholar 

  76. Karlik CC, Mahaffey JW, Coutu MD et al. Organization of contractile protein genes within the 88F subdivision of the D. melanogaster third chromosome. Cell 1984; 37:469–481.

    Article  PubMed  CAS  Google Scholar 

  77. Hanke PD, Storti RV. The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoter and alternative splicing. Mol Cell Biol 1988; 8:3591–3602.

    PubMed  CAS  Google Scholar 

  78. Bautch VL, Storti RV, Mischke D et al. Organization and expression of Drosophila tropomyosin genes. J Mol Biol 1982; 162:231–250.

    Article  PubMed  CAS  Google Scholar 

  79. Fyrberg E, Fyrberg CC, Beall C et al. Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J Mol Biol 1990; 216:657–675.

    Article  PubMed  CAS  Google Scholar 

  80. Benoist P, Mas JA, Marco R et al. Differential muscle-type expression of the Drosophila troponin T gene: A 3-base pair microexon is involved in visceral and adult hypodermic muscle specification. J Biol Chem 1998; 273:7538–7546.

    Article  PubMed  CAS  Google Scholar 

  81. Bullard B, Leonard K, Larkins A et al. Troponin of asynchronous flight muscle. J Mol Biol 1988; 204:621–637.

    Article  PubMed  CAS  Google Scholar 

  82. Mardahl-Dumesnil M, Fowler VM. Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J Cell Biol 2001; 155:1043–1053.

    Article  PubMed  CAS  Google Scholar 

  83. Salzberg A, Develyn D, Schulze KL et al. Mutations affecting the pattern of the PNS in Drosophila reveal novel aspects of neuronal development. Neuron 1994; 13:269–287.

    Article  PubMed  CAS  Google Scholar 

  84. Dye CA, Lee JK, Atkinson RC et al. The Drosophila sanpodo gene controls sibling cell fate and encodes a tropomodulin homolog, and actin/tropomyosin-associated protein. Development 1998; 125:1845–1856.

    PubMed  CAS  Google Scholar 

  85. Fyrberg EA, Kindle KL, Davidson N. The actin genes of Drosophila: A dispersed multigene family. Cell 1980; 19:365–378.

    Article  PubMed  CAS  Google Scholar 

  86. Ball E, Karlik CC, Beall CJ et al. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 1987; 51:221–228.

    Article  PubMed  CAS  Google Scholar 

  87. Tobin SL, Zulauf E, Sánchez F et al. Multiple actin-related sequences in the Drosophila melanogaster genome. Cell 1980; 19:121–131.

    Article  PubMed  CAS  Google Scholar 

  88. Nongthomba U, Pasalodos-Sanchez S, Clark S et al. Expression and function of the Drosophila Act88F actin isoform is not restricted to the indirect flight muscles. J Muscle Res Cell Motil 2001; 22:111–119.

    Article  PubMed  CAS  Google Scholar 

  89. Hiromi Y, Hotta Y. Actin gene mutations in Drosophila; heat shock activation in the indirect flight muscles. EMBO J 1985; 4:1681–1687.

    PubMed  CAS  Google Scholar 

  90. Fyrberg EA, Mahaffey JW, Bond BJ et al. Transcripts of the six Drosophila actin genes accumulate in a stage-and tissue-specific manner. Cell 1983; 33:115–123.

    Article  PubMed  CAS  Google Scholar 

  91. Barbas JA, Galceran J, Krahjentgens I et al. Troponin-I is encoded in the haplolethal region of the Shaker gene-complex of Drosophila. Genes Dev 1991; 5:132–140.

    Article  PubMed  CAS  Google Scholar 

  92. Barbas JA, Galceran J, Torroja L et al. Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol Cell Biol 1993; 13:1433–1439.

    PubMed  CAS  Google Scholar 

  93. Beall C, Fyrberg C, Song S et al. Isolation of a Drosophila gene encoding glutathione-S-transferase. Biochem Genet 1992; 30:515–527.

    Article  PubMed  CAS  Google Scholar 

  94. Clayton JD, Cripps RM, Sparrow JC et al. Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 1998; 19:117–127.

    Article  PubMed  CAS  Google Scholar 

  95. Toffenetti J, Mischke D, Pardue ML. Isolation and characterization of the gene for myosin light chain 2 of Drosophila melanogaster. J Cell Biol 1987; 104:19–28.

    Article  PubMed  CAS  Google Scholar 

  96. Parker VP, Falkenthal S, Davidson N. Characterization of the myosin light-chain-2 gene of Drosophila melanogaster. Mol Cell Biol 1985; 5:3058–3068.

    PubMed  CAS  Google Scholar 

  97. Takano-Ohmura H, Hirose G, Mikawa T. Separation and identification of Drosophila myosin light chains. J Biochem 1983; 94:967–974.

    Google Scholar 

  98. Vigoreaux JO, Saide JD, Valgeirsdottir K et al. Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol 1993; 121:587–598.

    Article  PubMed  CAS  Google Scholar 

  99. Vigoreaux JO, Hernandez C, Moore J et al. A genetic deficiency that spans the flightin gene of Drosophila melanogaster affects the ultrastructure and function of the flight muscles. J Exp Biol 1998; 201:2033–2044.

    PubMed  CAS  Google Scholar 

  100. Falkenthal S, Parker VP, Mattox WW et al. Drosophila melanogaster has only one myosin alkali light-chain gene which encodes a protein with considerable amino-acid sequence homology to chicken myosin alkali light-chains. Mol Cell Biol 1984; 4:956–965.

    PubMed  CAS  Google Scholar 

  101. Falkenthal S, Parker VP, Davidson N. Developmental variations in the splicing pattern of transcripts from the Drosophila gene encoding myosin alkali light chain results in different carboxyl-terminal amino-acid sequences. Proc Natl Acad Sci USA 1985; 82:449–453.

    Article  PubMed  CAS  Google Scholar 

  102. Falkenthal S, Graham M, Wilkinson J. The indirect flight muscle of Drosophila accumulates a unique myosin alkali light chain isoform. Dev Biol 1987; 121:263–272.

    Article  PubMed  CAS  Google Scholar 

  103. Qiu F, Lakey A, Agianian B et al. Troponin C in different insect muscle types: Identification of an isoform in Lethocerus, Drosophila and Anopheles that is specific to asynchronous flight muscle in the adult insect. Biochem J 2003; 371:811–821.

    Article  PubMed  CAS  Google Scholar 

  104. Herranz R, Diaz-Castillo C, Nguyen TP et al. Expression patterns of the whole troponin C gene repertoire during Drosophila development. Gene Exp Patterns 2004; 4:183–190.

    Article  CAS  Google Scholar 

  105. Fyrberg C, Parker H, Hutchison B et al. Drosophila melanogaster genes encoding three troponin-C isoforms and a calmodulin-related protein. Biochem Genet 1994; 32:119–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Cripps, R.M. (2006). The Contributions of Genetics to the Study of Insect Flight Muscle Function. In: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-31213-7_1

Download citation

Publish with us

Policies and ethics