Skip to main content

On Modelling of Refractory Castables by Marked Gibbs and Gibbsian-like Processes

  • Chapter
Case Studies in Spatial Point Process Modeling

Part of the book series: Lecture Notes in Statistics ((LNS,volume 185))

Summary

The modelling of self-flowing refractory castables, a special kind of concrete, is discussed. It consists of two phases: a system of randomly distributed spherical hard grains and a cement matrix. The focus is on marked Gibbs and Gibbsian-like processes but also some other models are discussed. It turns out that a particular canonical marked Gibbsian-like process is useful for modelling the samples and more plausible than the classical stationary marked Gibbs process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Baddeley and J. Møller. Nearest-neighbour Markov point processes and random sets. International Statistical Review, 57:89–121, 1989.

    Article  MATH  Google Scholar 

  2. A.J. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point patterns. Australian and New Zealand Journal of Statistics, 42:283–322, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Ballani, D.J. Daley and D. Stoyan. Modelling the microstructure of concrete with spherical grains. To appear in Computational Materials Science, 2005.

    Google Scholar 

  4. M. Bargieł and J. Moscinski. C language program for irregular packing of hard spheres. Computer Physics Communications, 64:183–192, 1991.

    Article  Google Scholar 

  5. D.P. Bentz, E.J. Garboczi and K.A. Snyder. A hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media. Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, http://ciks.cbt.nist.gov/~garbocz/hcss/useguide.html, 1999.

    Google Scholar 

  6. G. Döge, K.R. Mecke, J. Møller, D. Stoyan and R.P. Waagepetersen. Grand canonical simulations of hard-disk systems by simulated tempering. International Journal of Modern Physics C, 15:129–147, 2004.

    Article  Google Scholar 

  7. G. Döge and D. Stoyan. Statistics for non-sparse homogeneous Gibbs point processes. In: K.R. Mecke, D. Stoyan (eds) Morphology of Condensed Matter. Physics and Geometry of Spatially Complex Systems. Lecture Notes in Physics, No. 600, 418–427, Springer, Berlin Heidelberg, 2002.

    Google Scholar 

  8. J.W. Evans. Random and cooperative sequential adsorption. Review of Modern Physics, 65:1281–1304, 1993.

    Article  Google Scholar 

  9. A. Frey and V. Schmidt. Marked point processes in the plane I — a survey with applications to spatial modelling of communication networks. Adv. Perf. Anal., 1:65–110, 1998.

    Google Scholar 

  10. M. Goulard, A. Särkkä and P. Grabarnik. Parameter estimation for marked Gibbs processes through the maximum pseudolikeliood method. Scandinavian Journal of Statistics, 23:365–379, 1996.

    MATH  Google Scholar 

  11. J. Hubálková and D. Stoyan. On a quantitative relationship between degree of inhomogeneity and cold crushing strength of refractory castables. Cement Concrete Research, 33:747–753, 2003.

    Article  Google Scholar 

  12. J.L. Jensen and J. Møller. Pseudolikelihood for exponential family models of spatial point processes. Annals of Applied Probability, 1:445–461, 1991.

    MathSciNet  MATH  Google Scholar 

  13. T. Kokkila, A. Mäkelä and E. Nikinmaa. A method for generating stand structures using Gibbs marked point process. Silva Fennica, 36:265–277, 2002.

    Google Scholar 

  14. M.N.M. van Lieshout. Stochastic Geometry Models in Image Analysis and Spatial Statistics. CWI Tract, 108, Amsterdam, 1995.

    Google Scholar 

  15. H. Löwen. Fun with hard spheres. In: K.R. Mecke, D. Stoyan, (eds) Statistical Physics and Spatial Statistics. The Art of Analyzing Spatial Structures and Pattern Formation. Lecture Notes in Physics, No. 554, 295–331, Springer, Berlin Heidelberg, 2000.

    Google Scholar 

  16. B.D. Lubachevsky and F.H. Stillinger. Geometric properties of random disk packings. Journal of Statistical Physics, 60:561–583, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Mase. On the possible form of size distributions for Gibbsian processes of mutually non-intersecting discs. Journal of Applied Probability, 23:646–659, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Mase, J. Møller, D. Stoyan, R.P. Waagepetersen and G. Döge. Packing densities and simulated tempering for hard-core Gibbs point processes. Annals of the Institute of Statistical Mathematics, 53:661–680, 1999.

    Article  Google Scholar 

  19. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, H. Teller and E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

    Article  Google Scholar 

  20. J. Møller and R.P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2003.

    Google Scholar 

  21. P. Sollich. Predicting phase equilibria in polydisperse systems. Journal of Physics: Condensed Matter, 14:79–117, 2002.

    Article  Google Scholar 

  22. D. Stoyan. Statistical inference for a Gibbs point process of mutually non-intersecting discs. Biometrical Journal, 51:153–161, 1989.

    Google Scholar 

  23. D. Stoyan. Random systems of hard particles: models and statistics. Chinese Journal of Stereology and Image Analysis, 7:1–14, 2002.

    Google Scholar 

  24. D. Stoyan, W.S. Kendall and J. Mecke. Stochastic Geometry and its Applications. John Wiley & Sons, Chichester, 1995.

    MATH  Google Scholar 

  25. D. Stoyan and M. Schlather. Random sequential adsorption: Relationship to dead leaves and characterization of variability. Journal of Statistical Physics, 100:969–979, 2000.

    Article  MATH  Google Scholar 

  26. D. Stoyan and H. Stoyan. Fractals, Random Shapes and Point Fields. John Wiley & Sons, Chichester, 1994.

    MATH  Google Scholar 

  27. S. Torquato. Random Heterogeneous Materials: Microstructures and Macroscopic Properties. Springer, New York, 2002.

    MATH  Google Scholar 

  28. N.B. Wilding and P. Sollich. Grand canonical ensemble simulation studies of polydisperse fluids. Journal of Chemical Physics, 116:7116–7126, 2002.

    Article  Google Scholar 

  29. G. Winkler. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Springer, Berlin, 2003.

    MATH  Google Scholar 

  30. D.N. Winslow, M.D. Cohen, D.P. Bentz, K.A. Snyder and E.J. Garboczi. Percolation and pore structure in mortars and concrete. Cement Concrete Research, 24:25–37, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Ballani, F. (2006). On Modelling of Refractory Castables by Marked Gibbs and Gibbsian-like Processes. In: Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D. (eds) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol 185. Springer, New York, NY. https://doi.org/10.1007/0-387-31144-0_8

Download citation

Publish with us

Policies and ethics