Skip to main content

Assessing Spatial Point Process Models Using Weighted K-functions: Analysis of California Earthquakes

  • Chapter
Case Studies in Spatial Point Process Modeling

Part of the book series: Lecture Notes in Statistics ((LNS,volume 185))

Summary

We investigate the properties of a weighted analogue of Ripley’s Kfunction which was first introduced by Baddeley, Møller, and Waagepetersen. This statistic, called the weighted or inhomogeneous K-function, is useful for assessing the fit of point process models. The advantage of this measure of goodness-of-fit is that it can be used in situations where the null hypothesis is not a stationary Poisson model. We note a correspondence between the weighted K-function and thinned residuals, and derive the asymptotic distribution of the weighted K-function for a spatial inhomogeneous Poisson process. We then present an application of the use of the weighted K-function to assess the goodness-of-fit of a class of point process models for the spatial distribution of earthquakes in Southern California.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike. A new look at statistical model identification. IEEE Transactions on Automatic Control, AU-19:716–722, 1974.

    Article  MathSciNet  Google Scholar 

  2. A.J. Baddeley, J. Møller and R.P. Waagepetersen. Non-and semiparametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3):329–350, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. A.J. Baddeley and B.W. Silverman. A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics, 40:1089–1093, 1984.

    MathSciNet  Google Scholar 

  4. M. Bartlett. The spectral analysis of two-dimensional point processes. Biometrika, 51:299–311, 1964.

    Article  MathSciNet  Google Scholar 

  5. J.E. Besag. Comment on “modelling spatial patterns” by b.d. ripley. Journal of the Royal Statistical Society, Series B, 39:193–195, 1977.

    MathSciNet  Google Scholar 

  6. N.A.C. Cressie. Statistics for spatial data, revised edition. Wiley, New York, 1993.

    Google Scholar 

  7. D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes, 2nd edition. Springer, New York, 2003.

    MATH  Google Scholar 

  8. R. Davies. Testing the hypothesis that a point process is poisson. Adv. Appl. Probab., 9:724–746, 1977.

    Article  MATH  Google Scholar 

  9. J. Dijkstra, T. Rietjens and F. Steutel. A simple test for uniformity. Statistica Neerlandica, 38:33–44, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Durret. Probability: Theory and Examples. Wadsworth, Belmont, CA, 1991.

    Google Scholar 

  11. L. Heinrich. Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary poisson cluster processes. Statistics, 19:87–106, 1988.

    MATH  MathSciNet  Google Scholar 

  12. L. Heinrich. Goodness-of-fit tests for the second moment function of a stationary multidimensional poisson process. Statistics, 22:245–278, 1991.

    MATH  MathSciNet  Google Scholar 

  13. Ohser J. and Stoyan D. On the second-order and orientation analysis of planar stationary point processes. Biometrical Journal, 23:523–533, 1981.

    MathSciNet  MATH  Google Scholar 

  14. A. Lawson. On tests for spatial trend in a non-homogeneous poisson process. Journal of Applied Statistics, 15:225–234, 1988.

    Google Scholar 

  15. B. Lisek and M. Lisek. A new method for testing whether a point process is poisson. Statistics, 16:445–450, 1985.

    MathSciNet  MATH  Google Scholar 

  16. E. Merzbach and Nualart. D. A characterization of the spatial poisson process and changing time. Annals of Probability, 14:1380–1390, 1986.

    MathSciNet  MATH  Google Scholar 

  17. Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83:9–27, 1988.

    Article  Google Scholar 

  18. Y. Ogata. Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50:379–402, 1998.

    Article  MATH  Google Scholar 

  19. J. Ohser. On estimators for the reduced second-moment measure of point processes. Mathematische Operationsforschung und Statistik series Statistics, 14:63–71, 1983.

    MATH  MathSciNet  Google Scholar 

  20. C. Peek-Asa, J.F. Kraus, L.B. Bourque, D. Vimalachandra, J. Yu and J. Abrams. Fatal and hospitalized injuries resulting from the 1994 northridge earthquake. International Journal of Epidemiology, 27 (3):459–465, 1998.

    Article  Google Scholar 

  21. B.D Ripley. The second-order analysis of stationary point processes. Journal of Applied Probability, 13:255–266, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  22. B.D Ripley. Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  23. J.G. Saw. Tests on intensity of a poisson process. Communications in Statistics, 4(8):777–782, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  24. F.P. Schoenberg. Transforming spatial point processes into poisson processes. Stochastic Processes and their Applications, 81:155–164, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. F.P. Schoenberg. Multi-dimensional residual analysis of point process models for earthquake occurrences. Journal of the American Statistical Association, 98:789–795, 2003.

    Article  MathSciNet  Google Scholar 

  26. G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1979.

    Google Scholar 

  27. B.W. Silverman. Distances on circles, toruses and spheres. Journal of Applied Probability, 15:136–143, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Stoyan and H. Stoyan. Improving ratio estimators of second order point process characteristics. Scandinavian Journal of Statistics, 27:641–656, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Veen, A., Schoenberg, F.P. (2006). Assessing Spatial Point Process Models Using Weighted K-functions: Analysis of California Earthquakes. In: Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D. (eds) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol 185. Springer, New York, NY. https://doi.org/10.1007/0-387-31144-0_16

Download citation

Publish with us

Policies and ethics