Skip to main content
Book cover

Oncology pp 41–57Cite as

Principles of Radiation Oncology

  • Chapter

Abstract

The medical specialty of radiation oncology has evolved significantly over the past 50 years, having begun as a subspecialty within diagnostic radiology in the 1930s and 1940s. Today, more than 50% of newly diagnosed cancer patients receive radiation therapy, typically as a part of curative combined modality treatment with surgery and/or chemotherapy. Additionally, a majority of patients who present with metastatic disease or who develop metastases following initial cancer treatment require palliative radiation therapy. As such, the radiation oncologist plays a major role in the management of most adult cancers and certain groups of pediatric and adolescent cancers. The intent of this chapter is to provide an overview of radiation biology, newer approaches to radiation treatment planning, the use of specialized applications of radiation therapy, and the mechanisms of drug-radiation interactions leading to radiosensitization, as well as the evolving area of targeted radiation therapy. It is hoped that this overview provides the necessary fundamental knowledge of radiation oncology for the reader (particularly nonradiation oncologists) to then better understand the rationale for the use of radiation therapy in specific cancers as detailed in other chapters throughout this textbook.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Regaud C. Sur Les Principles Radiophysiologiques De La Radiotherapie Des Cancers. Acta Radiol 1930;86:456–461.

    Google Scholar 

  2. Coutard H. Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx and larynx from 1920 to 1926. Am J Roentgenol 1992;8:313–319.

    Google Scholar 

  3. Coutard H. Present conception of treatment of the larynx. Radiology 1940;34:136–145.

    Google Scholar 

  4. Ward JF. Mechanisms of DNA repair and their potential modification for radiotherapy. Int J Radiat Oncol Biol Phys 1986; 12:1027–1032.

    PubMed  CAS  Google Scholar 

  5. Haber JE. Partners and pathways repairing a double-strand break. Trends Genet 2000;16:259–264.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen-Jonathan E, Bernhard E, McKenna GW. How does radiation kill? Curr Opin Chem Biol 1999;3:77–83.

    Article  CAS  Google Scholar 

  7. Steel GG (ed). Clonogenic Cells and the Concept of Cell Survival in Basic Clinical Radiobiology. London: Arnold, 2002:52–54.

    Google Scholar 

  8. Cox JD. Proton beam radiation therapy in treatment of cancer. Clin Adv Hematol Oncol 2993;2:355–356.

    Google Scholar 

  9. Jagsi R, Delaney TF, Donelan K, Tarbell NJ. Real time rationing of scarce resources: the Northeast Proton Therapy Center experience. J Clin Oncol 2004;22:2246–2250.

    Article  PubMed  Google Scholar 

  10. Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage? Nat Rev 2003;4:361–372.

    Article  CAS  Google Scholar 

  11. Lindahl T, Wood RD. Quality control by DNA repair. Science 1000;286:1897–1905.

    Article  Google Scholar 

  12. Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair 2003;2:955–969.

    Article  PubMed  CAS  Google Scholar 

  13. Radivoyevitch T, Taverna P, Schupp JE, Kinsella TJ. The linearquadratic log-survival radiation dose model: confidence ellipses, drug-drug interactions, and brachytherapeutic gains. Med Hypotheses Res 2004;1:23–28.

    Google Scholar 

  14. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003;22:5792–5812. 1

    Article  PubMed  CAS  Google Scholar 

  15. Leskov KS, Criswell T, Antonio S, Yang C-R, Kinsella TJ, Boothman DA. When x-ray inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 2001;11: 352–372.

    Article  PubMed  CAS  Google Scholar 

  16. Lee SE, Mitchell RA, Cheng A, et al. Evidence for DNA-PK-dependent and-independent DNA double-strand break repair pathways as a function of the cell cycle. Mol Cell Biol 1997; 17:1425–1433.

    PubMed  CAS  Google Scholar 

  17. Thompson LH. Evidence that mammalian cells possess homologous recombinational repair pathways. Mutat Res 1996;363:77–88.

    PubMed  Google Scholar 

  18. Vandyck E, Stasiak AZ, Stasiak A, et al. Binding of double-strand breaks in DNA by human Rad 52 protein. Nature (Lond) 1999; 398:728–731.

    Article  CAS  Google Scholar 

  19. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004;59: 928–942.

    Article  PubMed  Google Scholar 

  20. Sinclar W, Morton R. X-ray and ultraviolet sensitivity of synchronized Chinese hamster cells in culture. Nature (Lond) 1965;199:1158–1160.

    Article  Google Scholar 

  21. Malumbres M, Baracid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001;1:222–231.

    Article  PubMed  CAS  Google Scholar 

  22. Nagasawa H, Li CY, Maki CG, et al. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells. Cancer Res 1995;55:1842–1846.

    PubMed  CAS  Google Scholar 

  23. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998; 12:2973–2983.

    PubMed  CAS  Google Scholar 

  24. Sherr CJ. The Pezcoller Lecture: Cancer cell cycles revisited. Cancer Res 2000;60:3689–3695.

    PubMed  CAS  Google Scholar 

  25. Xu B, Kim SY, Lim DS, et al. Two molecularly distinct G(2)/M checkpoints are induced by ionizing radiation. Mol Cell Biol 2002;22:1049–1059.

    Article  PubMed  CAS  Google Scholar 

  26. Yamane K, Chen J, Kinsella TJ. Both DNA topoisomerase II-binding protein 1 and BRCA1 regulate the G2/M cell cycle checkpoint. Cancer Res 2003;63:3049–3053.

    PubMed  CAS  Google Scholar 

  27. Yan T, Schupp JE, Hwang H-S, et al. Loss of DNA mismatch repair imparts defective cdc2 signaling and G2 arrest responses without altering survival after ionizing radiation. Cancer Res 2001;61:8290–8297.

    PubMed  CAS  Google Scholar 

  28. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol 1998;16:395–419.

    Article  PubMed  CAS  Google Scholar 

  29. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999;117:2941–2953.

    Google Scholar 

  30. Levin AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.

    Article  Google Scholar 

  31. Thomlinson R, Gray L. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539–544.

    PubMed  CAS  Google Scholar 

  32. Brown JM. Evidence for acutely hypoxic cells in mouse tumours and a possible mechanism for reoxygenation. Br J Radiol 1979; 52:650–658.

    Article  PubMed  CAS  Google Scholar 

  33. Raleigh J, Dewhirst M, Thrall D. Measuring tumor hypoxia. Semin Radiat Oncol 1996;6:37–46.

    Article  PubMed  Google Scholar 

  34. Chaplin D, Olive P, Durand R. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987; 47:597–604.

    PubMed  CAS  Google Scholar 

  35. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 2004;14:198–206.

    Article  PubMed  Google Scholar 

  36. Kaanders J, Bussink J, van der Kogel AJ. Clinical studies of hypoxia modification in radiotherapy. Semin Radiat Oncol 2004;14:233–240.

    Article  PubMed  Google Scholar 

  37. Kaanders J, Wijffels KI, Marres, et al. Pomonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res 2002;62:7066–7074.

    PubMed  CAS  Google Scholar 

  38. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  39. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721–732.

    Article  PubMed  CAS  Google Scholar 

  40. Purdy JA. Defining our goals: volume and dose specification for 3-D conformal radiation therapy. In: Meyer JL, Purdy JA (eds). Frontiers of Radiation Therapy and Oncology. 3-D Conformal Radiotherapy: A New Era in the Irradiation of Cancer. Basel: Karger, 1996:24–30.

    Google Scholar 

  41. Prescribing, Recording, and Reporting Photon Beam Therapy. International Commission on Radiation Units and Measurements (ICRU) Report 50, Bethesda, MD: ICRU Publications; 1993.

    Google Scholar 

  42. Prescribing, Recording, and Reporting Photon Beam Therapy. International Commission on Radiation Units and Measurements (ICRU) Report 62 (Supplement to ICRU Report 50), Bethesda, MD: ICRU Publications; 1999.

    Google Scholar 

  43. Purdy JA. Dose-volume specification: new challenges with intensity-modulated radiation therapy. Semin Radiat Oncol 2002;12:199–209.

    Article  PubMed  Google Scholar 

  44. Low DA. Quality assurance of intensity-modulated radiotherapy. Semin Radiat Oncol 2002;12:219–228.

    Article  PubMed  Google Scholar 

  45. Falco T, Shenouda G, Kaufman C, et al. Ultrasound imaging for external-beam prostate treatment setup and dosimetric verification. Med Dosim 2000;27:271–273.

    Article  Google Scholar 

  46. Zelefsky MJ, Fuks Z, Leibel SA. Intensity-modulated radiation therapy for prostate cancer. Sem Radiat Oncol 2002;12:229–237.

    Article  Google Scholar 

  47. Eisbruch A, Foote RL, O’Sullivan B, Beitler J, Vikram B. Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin Radiat Oncol 2002;12:238–249s.

    Article  PubMed  Google Scholar 

  48. Ling CC, Mitchell JB. Functional imaging and its application to radiation oncology. Semin Radiat Oncol 2001;11:1–92.

    Article  PubMed  Google Scholar 

  49. Knox SJ, Meredith RF. Clinical radioimmunotherapy. Semin Radiat Oncol 2000;10:73–93.

    Article  PubMed  CAS  Google Scholar 

  50. McDougall IR. Systemic radiation therapy with unsealed radionuclides. Semin Radiat Oncol 2000;10:94–102.

    Article  PubMed  CAS  Google Scholar 

  51. Houshmand P, Zlotnik A. Targetng tumor cells. Curr Opin Cell Biol 2003;15:640–644.

    Article  PubMed  CAS  Google Scholar 

  52. Hu KS, Enker WE, Harrison LB. High-dose rate intraoperative irradiation: current status and future directions. Semin Radiat Oncol 2002;12:62–80.

    Article  PubMed  Google Scholar 

  53. Blasko JC, Mate T, Sylvester JE, Grimm PD, Cavanaugh W. Brachytherapy for carcinoma of the prostate: techniques, patient selection and clinical outcomes. Semin Radiat Oncol 2002; 12:81–94.

    Article  PubMed  Google Scholar 

  54. Beaulieu L, Archambault L, Aubin S, et al. The robustness of dose distributions to displacement and migration of I-125 permanent seed implants over a wide range of seed number, activity, and designs. Int J Radiat Oncol Biol Phys 2004;58: 1298–1308.

    PubMed  Google Scholar 

  55. Nguyen HP, Kaluza GL, Zymek PT, et al. Intracoronary brachytherapy. Catheter Cardiovasc Interv 2002;56:281–288.

    Article  Google Scholar 

  56. Wang R, Li XA. Dosimetric comparison of two Sr-90/Y-90 sources for intravascular brachytherapy: an EGSnrc Monte Carlo calculation. Phys Med Biol 2002;47:4259–4269.

    Article  PubMed  Google Scholar 

  57. Streeter OE, Vicini FA, Keisch M, et al. MammoSite radiation therapy system. Breast 2003;12:491–496.

    Article  PubMed  Google Scholar 

  58. Keisch M, Vicini F, Kuske RR, et al. Initial clinical experience with the MammoSite breast brachytherapy applicator in women with early-stage breast cancer treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys 2003;55:289–293.

    Article  PubMed  Google Scholar 

  59. Merrick HW, Dobelbower RR. Intraoperative radiation therapy in surgical oncology. Surg Oncol Clin N Am 2003;12:883–899.

    Article  PubMed  Google Scholar 

  60. Biggs PJ, Noyes RD, Willett CG. Clinical physics, applicator choice, technique, and equipment for electron intraoperative radiation therapy. Surg Oncol Clin N Am 2003;12:899–924.

    Article  PubMed  Google Scholar 

  61. Sindelar WF, Kinsella TJ. Normal tissue tolerance to intraoperative radiotherapy. Surg Oncol Clin N Am 2003;12:925–942.

    Article  PubMed  Google Scholar 

  62. Merrick HW, Thomas CR (eds). Intraoperative radiotherapy. Surg Oncol Clin N Am 2003;12:955–1078.

    Google Scholar 

  63. Sneed PK, Sun JN, Goetsch SJ, et al. A multi-institutional review of radiosurgery alone versus radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int J Radiat Oncol Biol Phys 2002;53:519–526.

    Article  PubMed  Google Scholar 

  64. Lorenzoni J, Deuriendt D, Massager N, et al. Radiosurgery for treatment of brain metastases: estimation of patient eligibility using three stratification systems. Int J Radiat Oncol Biol Phys 2004;60:218–224.

    Article  PubMed  Google Scholar 

  65. McGinn CJ, Lawrence TS. Recent advances in the use of radiosensitizing nucleosides. Semin Radiat Oncol 2001;11:270–280.

    Article  PubMed  CAS  Google Scholar 

  66. Lawrence TS, Blackstock G, McGinn CJ. The mechanisms of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol 2003;13:13–21.

    Article  PubMed  Google Scholar 

  67. Vallerga AK, Zarling D, Kinsella TJ. New radiosensitizing regimens, drugs, prodrugs and candidates: Capecitabine, Gemcitabine, Fludarabine, IPdR, Avastin, Veglin, Gleevac, Radvac, Erbitux or Iressa. Clin Adv Hematol Oncol 2004;2: 793–805.

    PubMed  Google Scholar 

  68. Hwang H-S, Davis TW, Houghton JA, Kinsella TJ. Radiosensitivity of thymidylate synthase deficient human colon cancer cells is affected by progression through the G1 restriction point into S-phase: implications for fluoropyrimidine radiosensitization. Cancer Res 2000;60:92–100.

    PubMed  CAS  Google Scholar 

  69. Kuo M-L, Kinsella TJ. Expression of ribonucleotide reductase following ionizing radiation in human cervical carcinoma cells. Cancer Res 1998;58:2245–2252.

    PubMed  CAS  Google Scholar 

  70. Kuo M-L, Hwang H-S, Sosnay PR, Kunugi KA, Kinsella TJ. Over-expression of the R2 subunit of ribonucleotide reductase in human nasopharyngeal cancer cells reduces radiosensitivity. Cancer J (Boston) 2003;9:277–285.

    PubMed  CAS  Google Scholar 

  71. Wouters BG, Weppler SA, Koritzinsky M, et al. Hypoxia as a target for combined modality treatments. Eur J Cancer 2002; 38:240–257.

    Article  PubMed  CAS  Google Scholar 

  72. Stratford IJ, Williams KJ, Cowen RL, Jaffar M. Combining bioreductive drugs and radiation for the treatment of solid tumors. Semin Radiat Oncol 2003;13:42–52.

    Article  PubMed  Google Scholar 

  73. Overgaard J, Hansen HS, Overgaard M, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitized in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study Protocol 5–85. Radiother Oncol 1998;46:135–146.

    Article  PubMed  CAS  Google Scholar 

  74. Sartor CI. Epidermal growth factor family receptors and inhibitors: radiation response modulators. Semin Radiat Oncol 2003; 13:22–30.

    Article  PubMed  Google Scholar 

  75. Siemann DW, Shi W. Targeting the tumor blood vessel network to enhance the efficacy of radiation therapy. Semin Radiat Oncol 2003;13:53–61.

    Article  PubMed  Google Scholar 

  76. Bonner JA, Trigo J, Humblet Y, et al. Phase 3 trial of radiation therapy plus cetuximab versus radiation therapy alone in locally advanced squamous cell carcinomas of the head and neck. Proc ASCO 2004;23:487.

    Google Scholar 

  77. Milas L. Cyclooxygenase-2 (COX-2) enzyme inhibitors as potential enhancers of tumor radioresponse. Semin Radiat Oncol 2001;11:290–299.

    Article  PubMed  CAS  Google Scholar 

  78. McKenna WG, Muschell RJ, Gupta AK, Hahn SM, Bernhard EJ. Farinesyltransferase inhibitors as radiation sensitizers. Semin Radiat Oncol 2002;12(suppl 2):27–32.

    Article  PubMed  Google Scholar 

  79. Jung M, Dritschilp A. NF-kß signaling pathway as a target for human tumor radiosensitization. Semin Radiat Oncol 2001; 11:346–351.

    Article  PubMed  CAS  Google Scholar 

  80. Karran P. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis (Oxf) 2001;22:1921–1937.

    Article  Google Scholar 

  81. Yan T, Schupp JE, Hwang H-S, et al. Loss of DNA mismatch repair imparts defective cdc2 signaling and G2 arrest responses without altering survival after ionizing radiation. Cancer Res 2001;61:8290–8297.

    PubMed  CAS  Google Scholar 

  82. Berry SE, Kinsella TJ. Targeting DNA mismatch repair for radiosensitization. Semin Radiat Oncol 2001;11:300–315.

    Article  PubMed  CAS  Google Scholar 

  83. Seo Y, Yan T, Schupp JE, Kinsella TJ. Differential radiosensitization in DNA mismatch repair proficient and deficient human colon cancer xenografts with 5-iodo-pyrimidinone-2’-deoxyribose. Clin Cancer Res 2004;10:7520–7528.

    Article  PubMed  CAS  Google Scholar 

  84. Russell JS, Brady K, Burgan WE, et al. Gleevac-mediated inhibition of RAD51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003;63:7377–7383.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kinsella, T.J., Sohn, J., Wessels, B. (2006). Principles of Radiation Oncology. In: Chang, A.E., et al. Oncology. Springer, New York, NY. https://doi.org/10.1007/0-387-31056-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-31056-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-24291-0

  • Online ISBN: 978-0-387-31056-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics