Skip to main content

Optimization of Radiation Therapy Dose Delivery with Multiple Static Collimation

  • Chapter
Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 85))

  • 1721 Accesses

Abstract

In radiation therapy new delivery techniques have been recently developed. Especially the multileaf collimator (MLC) has provided better facilities to deliver the dose for a cancer patient. The MLC based techniques allow the construction of 3-dimensional and conformal dose distributions. The succesful use of MLC delivery method requires the global optimization of the treatment plan. The paper gives one potential approach to optimize the treatment plan applying the so called multiple static MLC technique. For numerical optimization, the LGO global optimization software system is used. For the comparison of the numerical results, simulated annealing algorithm was used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bortfeld T. (1999). Optimized planning using physical objectives and constraints. Semin. Radiat. Oncol., 9:20–34.

    Article  Google Scholar 

  • Brahme A. (1995). Treatment optimization using physical and radiological objective functions. In Radiation Therapy Physics (Ed. Smith A.). Springer, Berlin.

    Google Scholar 

  • Brahme A. (1999). Optimized radiation therapy based on radiobiological objectives. Semin. Radiat. Oncol., 9, 35–48.

    Article  Google Scholar 

  • Börgers C. and Larsen E.W. (1996). On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport. Med. Phys., 23:1749–1759.

    Article  Google Scholar 

  • Börgers C. (1997). The radiation therapy planning problem. In Computational radiology and imaging: Therapy and diagnostic (Ed. Börgers C. and Natterer F.). Springer, Berlin.

    Google Scholar 

  • Censor Y., Altschuler M.D. and Powlis W.D. (1988). On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inv. Prob., 4:607–623.

    Article  MATH  MathSciNet  Google Scholar 

  • Censor Y. and Zenios S.A. (1997). Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, New York.

    Google Scholar 

  • Cercignani C. (1988) The Boltzmann Equation and Its Applications. Springer. Heidelberg.

    MATH  Google Scholar 

  • Corana A., Marchesi M., Martini C. and Ridella S. (1987). Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Transactions on Mathematical Software, 13:262–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Dautray R. and Lions J.-L. (1993). Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 6. Springer, Berlin.

    Google Scholar 

  • Dawson L.A., Anzai Y., Marsh L., Martel M.K., Paulino A., Ship J.A. and Eisbruch A. (2000). Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys., 46: 1117–1126.

    Article  Google Scholar 

  • Eisbruch A., Dawson L.A., Kim H.M., Bradford C.R., Terrell J.E., Chep-eha D.B., Teknos T.N., Anzai Y., Marsh L.H., Martel M.K., Ten Haken R.K., Wolf G.T. and Ship J.A. (1999). Conformal and intensity modulated irradiation of head and neck cancer: the potential for improved target irradiation, salivary gland function, and quality of life. Ada Otorhinolaryngol. Belg., 53: 271–275.

    Google Scholar 

  • Gustafsson A., Lind B.K., Svensson R. and Brahme A. (1994). Simultaneous optimization of dynamic multileaf collimation and scanning patterns of compensation filters using a generalized pencil beam algorithm. Med. Phys., 22:1141–1156.

    Article  Google Scholar 

  • Horst R. and Tuy H. (1996). Global Optimization — Deterministic Approaches. Springer, Berlin.

    Google Scholar 

  • Janssen J.J., Riedeman D.E.J., Morawska-Kaczyńska M, Storchi P.R.M. and Huizenga H (1997). Numerical calculation of energy desposition by high-energy electron beams: III. Three-dimensional heterogeneous media. Phys. Med. Biol., 39:1351–1366.

    Article  Google Scholar 

  • Jette D. (1995). Electron beam dose calculation. In Radiation Therapy Physics (Ed. Smith A.R.). Springer, Berlin.

    Google Scholar 

  • Johns H.E. and Cunningham J.R. (1983). The Physics of Radiology, 4th ed. Thomas Springfield, IL.

    Google Scholar 

  • Kolmonen P., Tervo J. and Lahtinen T. (1998). The use of Cimmino algorithm and continuous approximation for dose deposition kernel in the inverse problem of radiation treatment planning. Phys. Med. Biol., 43:2539–2554.

    Article  Google Scholar 

  • Kolmonen P., Tervo J., Jaatinen K. and Lahtinen T. (2000). Direct computation of the “step-and-shoot” IMRT plan. In The Use of Computers in Radiation Therapy (Ed. Schegel W. and Bortfeld T.). Springer, Berlin.

    Google Scholar 

  • Larsen E.W. (1997). The nature of transport calculations used in radiation oncology. Trans. Theory Stat. Phys., 26:739–751.

    MATH  Google Scholar 

  • Mackie T.R., Bielajew A., Rogers D.W.O. and Battista J.J. (1988). Generation of photon energy kernels using EGS Monte Carlo code. Phys. Med. Biol., 33:1–20.

    Article  Google Scholar 

  • MATLAB Optimization Toolbox User’s Guide. MathWorks Inc. Natick, Massachusetts, USA.

    Google Scholar 

  • Nutting CM., Convery D.J., Cosgrove V.P., Rowbottom C, Padhani A.R., Webb S. and Dearnaley D.P. (2000). Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int. J. Radiat. Oncol. Biol. Phys., 48:649–656.

    Article  Google Scholar 

  • Oelfke U. and Bortfeld T. (1999) Inverse planning for x-ray rotation therapy: a general solution of the inverse problem. Phys. Med., 44:1089–1104.

    Article  Google Scholar 

  • Pintér J.D. (1996). Global Optimization in Action. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  • Pintér J.D. (1998). A model development system for global optimization. In High Performance Algorithms and Software in Nonlinear Optimization (Ed. DeLeone, Murli, Pardalos, Toroldo). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Pintér J.D. (2000). LGO-A Model Development System for Continuous Global Optimization. User’s Guide. Pinter Consulting Services, Halifax, NS.

    Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A. and Wetterling W.T. (1986). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sauer O.A., Shepard D.M. and Mackie T.R. (1999). Application of constrained optimization to radiotherapy planning. Med. Phys., 26: 2359–2366.

    Article  Google Scholar 

  • Shepard D.M., Ferris M.C., Olivera G.H. and Mackie T.R. (1999). Optimizing the delivery of radiation therapy to cancer patients. SI AM Review, 41:721–744.

    Article  MATH  Google Scholar 

  • Tervo J. and Kolmonen P. (1998). Data fitting model for the kernel of integral operator from radiation therapy. Math. Comput. Modelling, 28:59–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Tervo J., Kolmonen P., Vauhkonen M., Heikkinen L.M. and Kaipio J.P. (1999). A finite element model of electron transport in radiation therapy and related inverse problem. Inv. Probl., 15:1345–1361.

    Article  MATH  MathSciNet  Google Scholar 

  • Tervo J. and Kolmonen P. (2000). A model for the control of multileaf collimator in radiation therapy treatment planning. Inv. Probl., 16:1–21.

    Article  Google Scholar 

  • Tervo J. and Kolmonen P. (2002). Inverse radiotherapy treatment plan-ning model applying Boltzmann transport equation. Math. Models Methods Appl. Sci., 12:109–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Tervo J., Kolmonen P., Lyyra-Laitinen T., Pinter J.D. and Lahtinen T. (2003). An optimization-based approach to the multiple static tech-nique in radiation therapy. Annals Oper. Research, 119:205–227.

    Article  MATH  Google Scholar 

  • Tervo J., Lyyra-Laitinen T., Kolmonen P. and Boman E. (2003). An inverse treatment planning model for intensity modulated radiation therapy with dynamic MLC. Appl. Math. Comput., 135:227–250.

    Article  MATH  MathSciNet  Google Scholar 

  • Ulmer W. and Harder D. (1996). Application of a triple Gaussian pencil beam model for photon beam treatment planning. Z. Med. Phys., 6:68–74.

    Google Scholar 

  • Wang L. and Jette D. (1999). Photon dose calculation based on electron multiple-scattering theory: Primary dose desposition kernels. Med. Phys., 26:1454–1465.

    Article  Google Scholar 

  • Webb S. (1993). The Physics of Three-Dimensional Radiation Therapy. Institute Of Physics Publishing, Bristol.

    Book  Google Scholar 

  • Webb S. (1997). The Physics of Conformal Radiotherapy: Advances in Technology. Institute Of Physics Publishing, Bristol.

    Book  Google Scholar 

  • Yang J.N., Mackie T.R., Reckwerdt P., Deasy J.O. and Thomadsen B.R. (1997). An investigation of tomotherapy beam delivery. Med. Phys., 24:425–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tervo, J., Kolmonen, P., Pintér, J.D., Lyyra-Laitinen, T. (2006). Optimization of Radiation Therapy Dose Delivery with Multiple Static Collimation. In: Pintér, J.D. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 85. Springer, Boston, MA . https://doi.org/10.1007/0-387-30927-6_19

Download citation

Publish with us

Policies and ethics