Skip to main content

A Global Optimization Strategy and Its Use in Solvent Design

  • Chapter
  • 1748 Accesses

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 85))

Abstract

Solvent design can be modeled as a mixed integer nonlinear programming problem (MINLP) in which discrete variables denote the presence or absence of molecular structural entities and to what extent they occur in the pure component compound or mixture. On the other hand, continuous variables denote process variables such as temperature and flow rates. In the MINLP model the number of discrete variables can range from several tens to several hundreds. Therefore the use of the standard branch-and-bound method for solving the problem can be computationally intensive since all the variables (discrete and or continuous) must be used as branching variables. To overcome this problem, we have proposed a new strategy in which branching is done using branching functions instead of all the search variables. This approach results in a decrease in the number of branching variables. During branch and bound, the bounding operation is performed in the search variables space, while the branching operation is performed in a reduced dimension space defined by the branching (or splitting) functions. The branching functions are determined from the special tree function representation of both the objective function and constraints. The suggested MINLP solution approach is demonstrated on a solvent design application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Adjiman, C. S., Dallwig, S., Floudas, C. A., and Neumair, A. (1998). A global Optimization method, alpha-BB, for general twice-differentiable NLPs —I. Theoretic Advances. Computers and Chemical Engineering, 22(9), 1137–1158.

    Article  Google Scholar 

  • Archer, W. L. (1996). Industrial Solvent Handbook, Marcel Dekker Inc.

    Google Scholar 

  • Barton, A. F. (1985). CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Brooke, A. (1996) GAMS-A User’s Guide, Scientific Press, San Francisco, CA

    Google Scholar 

  • Churi, N., and Achenie, L. E. K. (1996). Novel Mathematical Programming Model for Computer Aided Molecular Design. Industrial and Engineering Chemistry Research, 35(10), 3788–3794.

    Article  Google Scholar 

  • Constantinou, L., and Gani, R. (1994). New Group Contribution Method for Estimating Properties of Pure Compounds. AIChE Journal, 40, 1697–1710.

    Article  Google Scholar 

  • Duvedi, A. P., and Achenie, L. E. K. (1996). Designing Environmentally Safe Refrigerants Using Mathematical Programming. Chemical Engineering Science, 51, 3727–3739.

    Article  Google Scholar 

  • Friedler, F., Fan, L. T., Kalotai, L., and Dallos, A. (1998). A combinatorial approach for generating candidate compounds with desired properties based on group contribution. Computers and Chemical Engineering, 22(6), 809–817.

    Article  Google Scholar 

  • Hansen, C. M., and Beerbower, A. (1971). Solubility Parameters. Kirk-Othmer Encyclopedia of Chemical Technology, A. Standen, ed., Interscience, New York.

    Google Scholar 

  • Horst, R., and Tuy, H. (1990). Global Optimization: Deterministic Approaches, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H. (1981). Handbook of Chemical Property Estimation Methods, McGraw-Hill Book Company.

    Google Scholar 

  • Maranas, C. D. (1997). Optimal Molecular Design under Property Prediction Uncertainty. AIChE Journal 43(5), 1250–1263.

    Article  Google Scholar 

  • McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs. Part I — convex underestimating problems. Math. Program., 10, 147–175.

    Article  MATH  MathSciNet  Google Scholar 

  • Moore, R. E. (1966). Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Odele, O., and Machietto, S. (1993). Computer Aided Molecular Design: A Novel Method for Optimal Solvent Selection. Fluid Phase Equilibria, 82, 47–54.

    Article  Google Scholar 

  • Ostrovsky, G. M., Ostrovsky, M. G., and Mikhailow, G. W. (1990). Discrete Optimization of chemical processes. Computers and Chemical Engineering, 14(1), 111.

    Article  Google Scholar 

  • Ostrovsky, G., Achenie, L. E. K., and Sinha, M. “A Reduced Dimension Branch-and-Bound Algorithm for Molecular Design,” (to appear in Journal of Global Optimization, circa 2000)

    Google Scholar 

  • Pantelides, (1996). Global Optimization of General Process Models. In I.E. Grossmann, ed. Global Optimization in Engineering Design, Kluwer Academic Publishers.

    Google Scholar 

  • Pistikopoulos, E. N., and Stefanis, S. K. (1998). Optimal solvent design for environmental impact minimization. Computers and Chemical Engineering, 22(6), 717–733.

    Article  Google Scholar 

  • Quesada, I., and Grossmann, I. E. (1995). A Global Optimization Algorithm for Linear Fractional and Bilinear Programs. Journal of Global Optimization, 6, 39–76.

    Article  MATH  MathSciNet  Google Scholar 

  • Ryoo, H. S., and Sahinidis, N. V. (1996). A Branch-and-Reduce Approach to Global Optimization. Journal of Global Optimization, 8, 107–138.

    Article  MATH  MathSciNet  Google Scholar 

  • Sherali, H. D., and Alameddine, A. (1992). A new reformulation-linearization technique for bilinear programming problems. Journal of Global Optimization, 2, 379–410.

    Article  MATH  MathSciNet  Google Scholar 

  • Sinha, M. A Systems Engineering Framework for Solvent Design. Ph.D. Thesis, University of Connecticut, 1999.

    Google Scholar 

  • Sinha, M., Achenie, L. E. K. and Ostrovsky, G. M. “Design of Environmentally Benign Solvents via Global Optimization,” Comp. Chem Eng. 23, 1381–1394, 1999.

    Article  Google Scholar 

  • Sinha, M. Achenie, L. E. K., and Ostrovsky, G., In Computer Aided Molecular Design: Theory and Practice, Editors: Luke E. K. Achenie, Rafiqul Gani, & V. Venkatasubramanian, Elsevier Publishers, 2002, isbn 0-444-51283-7).

    Google Scholar 

  • Tamiz, M. (1996). Multi-Objective Programming and Goal Programming Theories and Applications, Springer, York.

    MATH  Google Scholar 

  • Vaidyanathan, R., and El-Halwagi, M. (1994). Computer-Aided Design of High Performance Polymers. J. Elastom Plasti., 26(3), 277.

    Google Scholar 

  • Venkatasubramanium, V., and Chan, K. (1989). A neural network methodology for process fault diognosis. AIChE Journal, 35, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Achenie, L.E.K., Ostrovsky, G.M., Sinha, M. (2006). A Global Optimization Strategy and Its Use in Solvent Design. In: Pintér, J.D. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 85. Springer, Boston, MA . https://doi.org/10.1007/0-387-30927-6_1

Download citation

Publish with us

Policies and ethics