Skip to main content

The Goldbach-Vinogradov Theorem in Arithmetic Progressions

  • Conference paper
Number Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 15))

  • 1308 Accesses

Abstract

We prove that the ternary Goldbach problem can be solved with two of the prime variables in different arithmetic progressions.

Project supported partially by the National Natural Science Foundation of China(Grant No. 10471090).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ayoub, On Rademacher’s extension on the Goldbach-Vinogradov theorem, Trans. Amer. Math. Soc. 74 (1953), 482–491.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z. Cui, The ternary Goldbach problem in arithmetic progressions, to appear.

    Google Scholar 

  3. H. Davenport, Multiplicative Number Theory, 3rd ed., Springer, Berlin 2000.

    Google Scholar 

  4. P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329–339.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan’s identity, Canad. J. Math. 34 (1982), 1365–1377.

    MATH  MathSciNet  Google Scholar 

  6. J.-Y. Liu, The Goldbach-Vinogradov theorem with primes in a thin subset, Chinese Ann. Math. 19B:4 (1998), 479–488.

    Google Scholar 

  7. J.-Y. Liu and T. Zhan, The ternary Goldbach problem in arithmetic progressions, Acta Arith. 82 (1997), 197–227.

    MathSciNet  Google Scholar 

  8. J.-Y. Liu and M.-C. Liu, The exceptional set in the four prime squares problem, Illinois J. Math. 44 (2000), 272–293.

    MathSciNet  Google Scholar 

  9. M.-C. Liu and K.-M. Tsang, Small prime solutions of linear equations, in: Théorie des Nombres, J. M. De Koninck and C. Levesque (éd. J. M. Dekoninck and C. Levesque), 595–624. Walter de Gruyter, Berlin 1989.

    Google Scholar 

  10. M. C. Liu and T. Zhan, The Goldbach problem with primes in arithmetic progressions, in: Analytic Number Theory (Kyoto, 1996) (London Math. Soc. Lecture Note ser. 247, ed. Y. Motohashi), 227–251. Cambridge University Press, 1997.

    Google Scholar 

  11. C.-D. Pan and C.-B. Pan, Fundamentals of analytic number theory (in Chinese), Science Press, Beijing, 1991.

    Google Scholar 

  12. K. Prachar, Primzahlverteilung, Springer, Berlin 1957.

    Google Scholar 

  13. H. Rademacher, Über eine Erweiterung des Goldbachschen Problems, Math. Z. 25 (1926), 627–660.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., University Press, Oxford 1986.

    Google Scholar 

  15. R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge Tracts Math., vol. 125, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  16. I. M. Vinogradov, The representation of an odd number as a sum of three primes, Dokl. Akad. Nauk. SSSR 16 (1937), 291–294.

    Google Scholar 

  17. I. M. Vinogradov, Some theorems concerning the theory of primes, Math. Sb. N. S., 2 (1937), 179–195.

    MATH  Google Scholar 

  18. D. Wolke, Some applications to zero-density theorems for L-functions, Acta Math. Hungar. 61 (1993), 241–258.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Zhan and J.-Y. Liu, A Bombieri type mean-value theorem concerning exponential sums over primes, Chinese Sci. Bull. 41 (1990), 363–366.

    MathSciNet  Google Scholar 

  20. A. Zulauf, Beweis einer Erweiterung des Stazes Von Goldbach-Vinogradov. J. Reine Angew. Math. 190 (1952), 169–198.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Cui, Z. (2006). The Goldbach-Vinogradov Theorem in Arithmetic Progressions. In: Zhang, W., Tanigawa, Y. (eds) Number Theory. Developments in Mathematics, vol 15. Springer, Boston, MA. https://doi.org/10.1007/0-387-30829-6_5

Download citation

Publish with us

Policies and ethics