Skip to main content

Water Activity and Sorption Properties of Foods

  • Chapter
Physical Properties of Foods

Part of the book series: Food Science Text Series ((FSTS))

Abstract

Water activity and sorption properties of foods have been considered as important physical properties in food formulations and processes. Most of the biochemical and microbiological reactions are controlled by the water activity of the system, which is therefore a useful parameter to predict food stability and shelf life. The rate of moisture transfer in the drying process and through the packaging film or edible food coating during storage can be estimated and as a result drying conditions, packaging, or coating material can be selected using water activity and sorption properties of foods. In addition, these properties must be considered in product development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Akanbi, C.T., Adeyemi, R.S., & Ojo, A. (2006). Drying characteristics and sorption isotherms of tomato slices. Journal of Food Engineering, 28, 45–54.

    Article  Google Scholar 

  • Anderson, R.B. (1946). Modification of the B.E.T. equation. Journal of American Chemical Society, 68, 686–691.

    Article  CAS  Google Scholar 

  • Ayranci, E., & Duman, O. (2005). Moisture sorption isotherms of cowpea (Vigna unguiculata L. Walp) and its protein isolate at 10, 20 and 30 °C. Journal of Food Engineering, 70, 83–91.

    Article  Google Scholar 

  • Bell, L.N., & Labuza, T.P. (2000). Moisture Sorption: Practical Aspects of Isotherm Measurement and Use. St Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Brunauer, S., Emmett, P.H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Caurie, M.A. (1985). Corrected Ross equation. Journal of Food Science, 50, 1445–1447.

    Article  CAS  Google Scholar 

  • Cazier, J.B., & Gekas, V. (2001). Water activity and its prediction: A review. International Journal of Food Properties, 4, 35–43.

    Article  CAS  Google Scholar 

  • Crapiste, G.H., & Rotstein, E. (1982). Prediction of sorptional equilibrium data for starch-containing foodstuff. Journal of Food Science, 47, 1501–1507.

    Article  CAS  Google Scholar 

  • de Boer, J.H. (1953). The Dynamical Character of Adsorption. Oxford: Clarendon Press.

    Google Scholar 

  • Fasina, O.O. (2005). Thermodynamic properties of sweetpotato. Journal of Food Engineering (http:/dx.doi.org/10.1016/j.jfoodeng.2005.04.004).

    Google Scholar 

  • Fortes, M., & Okos, MR. (1980). Drying theories: Their bases and limitations as applied to foods and grains. In A.S. Mujumdar (Ed.), Advances in Drying, Vol. 1 (pp. 119–154). Washington, DC: Hemisphere.

    Google Scholar 

  • Greenspan L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81(1), 89–96.

    Google Scholar 

  • Grover, D.W., & Nicol, J.M. (1940). The vapour pressure of glycerine solutions at 20°C. Journal of the Society of Chemical Industry, 59, 175–177.

    CAS  Google Scholar 

  • Guggenheim, E.A. (1966). Applications of Statistical Mechanics. Oxford: Clarendon Press.

    Google Scholar 

  • Halsey, G. (1948). Physical adsorption on non-uniform surfaces. Journal of Chemical Physics, 16, 931–937.

    Article  CAS  Google Scholar 

  • Henderson, S.M. (1952). A basic concept of equilibrium moisture. Agricultural Engineering, 33, 29–32.

    Google Scholar 

  • Iglesias, H.A., & Chirife, J. (1976). A model for describing the water sorption behavior of foods. Journal of Food Science, 41, 984–992.

    Article  Google Scholar 

  • Iglesias, H.A., & Chirife, J. (1978). An empirical equation for fitting water sorption isotherms of fruits and related products. Canadian Institute of Food Science of Technology Journal, 11, 12–15.

    Google Scholar 

  • Kapsalis, J.G. (1987). Influences of hysterisis and temperature on moisture sorption isotherms. In L.B. Rockland & L.R. Buchat (Eds.), Water Activity: Theory and Applications to Food (pp. 173–213). New York: Marcel Dekker.

    Google Scholar 

  • Kaya, S., & Kahyaoglu T. (2005). Thermodynamic properties and sorption equilibrium of pestil (grape leather). Journal of Food Engineering, 71, 200–207.

    Article  Google Scholar 

  • Kaya, S., & Oner, M.D. (1995). Water activity and moisture sorption isotherms of Gaziantep cheese. Journal of Food Quality, 19, 121–132.

    Article  Google Scholar 

  • Kaymak-Ertekin, F., & Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. Lebensmittel Wissenschaft und Technologie, 37, 429–438.

    Article  CAS  Google Scholar 

  • Labuza T. P. (1984). Moisture Sorption: Practical Aspects of Isotherm Measurement and Use. St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Labuza, T.P., Mizrahi, S., & Karel, M. (1972). Mathematical models for optimization of flexible film packaging of foods for storage. Transactions of ASAE, 15, 150–155.

    CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1402.

    Article  CAS  Google Scholar 

  • Lewicki, P.P., & Pomaranska-Lazuka, W. (2003). Errors in static desiccator method of water sorption isotherm estimation. International Journal of Food Properties, 6, 557–563.

    Article  Google Scholar 

  • Lomauro, C.J., Bakshi, A.S., & Labuza, T.P. (1985). Evaluation of food moisture sorption isotherm equations.1. Fruit, vegetable and meat-products. Lebensmittel Wissenschaft und Technologie, 18(2), 111–117.

    Google Scholar 

  • Nunes, R.V., Urbicain, M.J., & Rotstein, E. (1985). Improving accuracy and precision of water activity measurements with a vapor pressure manometer, Journal of Food Science, 50, 148–149.

    Article  Google Scholar 

  • Okos M.R., Narsimhan G., Singh R.K. & Weitnauer, A.C. (1992). Food Dehydration. In R. Heldman & D.B. Lund (Eds.), Handbook of Food Engineering (pp. 437–562). New York: Marcel Dekker.

    Google Scholar 

  • Oswin, C.R. (1946). The kinetics of package life. III. The isotherm. Journal of Chemical Industry (London), 65, 419–423.

    Article  CAS  Google Scholar 

  • Peleg, M. (1993). Assesment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherm. Journal of Food Process Engineering, 16, 21.

    Article  Google Scholar 

  • Perry, R.H., & Chilton, C.H. (1973). Chemical Engineering Handbook, 5th ed. New York: McGraw-Hill.

    Google Scholar 

  • Rahman, M.S. (1995). Food Properties Handbook. New York: CRC Press.

    Google Scholar 

  • Rizvi, S.S.H. (2005). Thermodynamic properties of foods in dehydration. In M.A. Rao, S.S.H. Rizvi & A.K. Datta (Eds.), Engineering Properties of Foods, 3rd ed. (pp. 239–326) Boca Raton, FL: CRC Press Taylor & Francis.

    Google Scholar 

  • Rockland, L.B. (1969). The practical approach to better low moisture foods: Water activity and storage stability. Food Technology, 23, 1241.

    Google Scholar 

  • Ross, K.D. (1975). Estimation of water activity in intermediate moisture foods. Food Technolology, 39, 26–34.

    Google Scholar 

  • Ruegg, M. (1980). Calculation of the activity of water in sulfuric acid solutions at various temperatures. Lebensmittel Wissenschaft und Technologie, 13, 22–24.

    Google Scholar 

  • Sahbaz, F., Palazoglu, T.K., & Uzman, D. (1999). Moisture sorption and the applicability of the Brunauer-Emmet-Teller (BET) equation for blanched and unblanched mushroom. Nahrung, 43, 325–329.

    Article  Google Scholar 

  • Smith, S.E. (1947). The sorption of water vapor by high polymers. Journal of the American Chemical Society, 69, 646–651.

    Article  CAS  Google Scholar 

  • Spiess, W.E.L., & Wolf, W. (1987). Critical evaluation of methods to determine moisture sorption isotherms. In L.B. Rockland and L.R. Beuchat (Eds.), Water Activity: Theory and Applications to Food (pp. 215–233). New York: Marcel Dekker.

    Google Scholar 

  • Tarigan, E., Prateepchaikul, G., Yamsaengsung, R., Srichote, A., & Tekasul, P. (2005). Sorption isotherms of shelled and unshelled kernels of candle nuts. Journal of Food Engineering (http://dx.doi.org/10.1016/j.jfoodeng.2005.04.030).

    Google Scholar 

  • Timmermann, E.O., Chirife, J., & Iglesias, H.A. (2001). Water sorption isotherms of foods and food stuffs: BET or GAB parameters? Journal of Food Engineering, 48, 19–31.

    Article  Google Scholar 

  • Troller, J.A. (1983). Methods to measure water activity. Journal of Food Protection, 46, 129–134.

    Google Scholar 

  • Troller, J.A., & Christian, J.H.B. (1978). Water Activity and Food. New York: Academic Press.

    Google Scholar 

  • Van den Berg, C. (1984). Description of water activity of foods for engineering purposes by means of the GAB model of sorption, In B.M. McKenna (Ed.), Engineering and Foods (pp. 311–321). London: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Sahin, S., Sumnu, S.G. (2006). Water Activity and Sorption Properties of Foods. In: Physical Properties of Foods. Food Science Text Series. Springer, New York, NY. https://doi.org/10.1007/0-387-30808-3_5

Download citation

Publish with us

Policies and ethics