Skip to main content

Disciplined Convex Programming

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 84))

Summary

A new methodology for constructing convex optimization models called disciplined convex programming is introduced. The methodology enforces a set of conventions upon the models constructed, in turn allowing much of the work required to analyze and solve the models to be automated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, 1992.

    Google Scholar 

  2. W. Achtziger, M. Bendsoe, A. Ben-Tal, and J. Zowe. Equivalent displacement based formulations for maximum strength truss topology design. Impact of Computing in Science and Engineering, 4(4):315–45, December 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Avriel, R. Dembo, and U. Passy. Solution of generalized geometric programs. International Journal for Numerical Methods in Engineering, 9:149–168, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Abdi, H. El Nahas, A. Jard, and E. Moulines. Semidefinite positive relaxation of the maximum-likelihood criterion applied to multiuser detection in a CDMA context. IEEE Signal Processing Letters, 9(6):165–167, June 2002.

    Article  Google Scholar 

  5. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, February 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Alkire and L. Vandenberghe. Convex optimization problems involving finite autocorrelation sequences. Mathematical Programming, Series A, 93:331–359, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity problem. Mathematical Programming, 84:375–400, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Boyd and C. Barratt. Linear Controller Design: Limits of Performance. Prentice-Hall, 1991.

    Google Scholar 

  9. M. Bendsoe, A. Ben-Tal, and J. Zowe. Optimization methods for truss geometry and topology design. Structural Optimization, 7:141–159, 1994.

    Article  Google Scholar 

  10. C. Bischof, A. Carle, G. Corliss, A. Grienwank, and P. Hovland. ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming, pages 1–29, December 1991.

    Google Scholar 

  11. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, 1994.

    Google Scholar 

  12. S. Benson. DSDP 4.5: A daul scaling algorithm for semidefinite programming. Web site: http://www-unix.mcs.anl.gov/~benson/dsdp/, March 2002.

    Google Scholar 

  13. D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 1995.

    MATH  Google Scholar 

  14. R. Byrd, N. Gould, J. Norcedal, and R. Waltz. An active-set algorithm for nonlinear programming using linear programming and equality constrained subproblems. Technical Report OTC 2002/4, Optimization Technology Center, Northwestern University, October 2002.

    Google Scholar 

  15. O. Bahn, J. Goffin, J. Vial, and O. Du Merle. Implementation and behavior of an interior point cutting plane algorithm for convex programming: An application to geometric programming. Working Paper, University of Geneva, Geneva, Switzerland, 1991.

    Google Scholar 

  16. S. Boyd, M. Hershenson, and T. Lee. Optimal analog circuit design via geometric programming, 1997. Preliminary Patent Filing, Stanford Docket S97–122.

    Google Scholar 

  17. R. Banavar and A. Kalele. A mixed norm performance measure for the design of multirate filterbanks. IEEE Transactions on Signal Processing, 49(2):354–359, February 2001.

    Article  Google Scholar 

  18. A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS: A User’s Guide. The Scientific Press, South San Francisco, 1998. Web site: http://www.gams.com/docs/gams/GAMSUsersGuide.pdf.

    Google Scholar 

  19. J. Borwein and A. Lewis. Duality relationships for entropy-like minimization problems. SIAM J. Control and Optimization, 29(2):325–338, March 1991.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Bertsimas and J. Nino-Mora. Optimization of multiclass queuing networks with changeover times via the achievable region approach: part ii, the multistation case. Mathematics of Operations Research, 24(2), May 1999.

    Google Scholar 

  21. D. Bertsekas, A. Nedic, and A. Ozdaglar. Convex Analysis and Optimization. Athena Scientific, Nashua, New Hampshire, 2004.

    Google Scholar 

  22. B. Borchers. CDSP, a C library for semidefinite programming. Optimization Methods and Software, 11:613–623, 1999.

    MATH  MathSciNet  Google Scholar 

  23. A. Ben-Tal and M. Bendsoe. A new method for optimal truss topology design. SIAM J. Optim., 13(2), 1993.

    Google Scholar 

  24. A. Ben-Tal, M. Kocvara, A. Nemirovski, and J. Zowe. Free material optimization via semidefinite programming: the multiload case with contact conditions. SIAM Review, 42(4):695–715, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Ben-Tal and A. Nemirovski. Interior point polynomial time method for truss topology design. SIAM Journal on Optimization, 4(3):596–612, August 1994.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite programming. SIAM J. Optim., 7(4):991–1016, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Ben-Tal and A. Nemirovski. Structural design via semidefinite programming. In Handbook on Semidefinite Programming, pages 443–467. Kluwer, Boston, 2000.

    Google Scholar 

  28. S. Boyd and L. Vandenberghe. Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization. In A. Paulraj, V. Roychowdhuri, and C. Schaper, editors, Communications, Computation, Control and Signal Processing: a Tribute to Thomas Kailath, chapter 15, pages 279–288. Kluwer Academic Publishers, 1997.

    Google Scholar 

  29. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

    Google Scholar 

  30. P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localization. Technical report, Stanford University, April 2004. Web site: http: //www.stanford.edu/~yyye/adhocn4.pdf.

    Google Scholar 

  31. A. Conn, N. Gould, D. Orban, and Ph. Toint. A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87:215–249, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Conn, N. Gould, and Ph. Toint. LANCELOT: a Fortran Package for Large-Scale Nonlinear Optimization (Release A), volume 17 of Springer Series in Computational Mathematics. Springer Verlag, 1992.

    Google Scholar 

  33. A. Conn, N. Gould, and Ph. Toint. Trust-Region Methods. Series on Optimization. SIAM/MPS, Philadelphia, 2000.

    MATH  Google Scholar 

  34. J. Chinneck. MProbe 5.0 (software package). Web site: http://www.sce.carleton.ca/facuity/chinneck/mprobe.html, December 2003.

    Google Scholar 

  35. G. Calafiore and M. Indri. Robust calibration and control of robotic manipulators. In American Control Conference, pages 2003–2007, 2000.

    Google Scholar 

  36. C. Crusius. A parser/solver for convex optimization problems. PhD thesis, Stanford University, 2002.

    Google Scholar 

  37. T. Terlaky C. Roos and J.-Ph. Vial. Interior Point Approach to Linear Optimization: Theory and Algorithms. John Wiley & Sons, New York, NY, 1997.

    Google Scholar 

  38. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

    Google Scholar 

  39. J. Dawson, S. Boyd, M. Hershenson, and T. Lee. Optimal allocation of local feedback in multistage amplifiers via geometric programming. IEEE Journal of Circuits and Systems I, 48(1):1–11, January 2001.

    Article  Google Scholar 

  40. M. Dahleh and I. Diaz-Bobillo. Control of Uncertain Systems. A Linear Programming Approach. Prentice Hall, 1995.

    Google Scholar 

  41. S. Dirkse and M. Ferris. The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software, 5:123–156, 1995.

    Google Scholar 

  42. Y. Doids, V. Guruswami, and S. Khanna. The 2-catalog segmentation problem. In Proceedings of SODA, pages 378–380, 1999.

    Google Scholar 

  43. T. Davidson, Z. Luo, and K. Wong. Design of orthogonal pulse shapes for communications via semidefinite programming. IEEE Transactions on Communications, 48(5):1433–1445, May 2000.

    Google Scholar 

  44. G. Dullerud and F. Paganini. A Course in Robust Control Theory, volume 36 of Texts in Applied Mathematics. Springer-Verlag, 2000.

    Google Scholar 

  45. C. de Souza, R. Palhares, and P. Peres. Robust H filter design for uncertain linear systems with multiple time-varying state delays. IEEE Transactions on Signal Processing, 49(3):569–575, March 2001.

    Article  MathSciNet  Google Scholar 

  46. A. Doherty, P. Parrilo, and F. Spedalieri. Distinguishing separable and entangled states. Physical Review Letters, 88(18), 2002.

    Google Scholar 

  47. B. Dumitrescu, I. Tabus, and P. Stoica. On the parameterization of positive real sequences and MA parameter estimation. IEEE Transactions on Signal Processing, 49(11):2630–2639, November 2001.

    Article  MathSciNet  Google Scholar 

  48. R. Duffin. Linearizing geometric programs. SIAM Review, 12:211–227, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  49. C. Du, L. Xie, and Y. Soh. H filtering of 2-D discrete systems. IEEE Transactions on Signal Processing, 48(6): 1760–1768, June 2000.

    Article  MATH  Google Scholar 

  50. H. Du, L. Xie, and Y. Soh. H reduced-order approximation of 2-D digital filters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(6):688–698, June 2001.

    Article  MATH  Google Scholar 

  51. Laurent El Ghaoui, Jean-Luc Commeau, Francois Delebecque, and Ramine Nikoukhah. LMITOOL 2.1 (software package). Web site: http://robotics.eecs.berkeley.edu/~elghaoui/lmitool/lmitool.html, March 1999.

    Google Scholar 

  52. J. Ecker. Geometric programming: methods, computations and applications. SIAM Rev., 22(3):338–362, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  53. J.-P. A. Haeberly F. Alizadeh and M. Overton. Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM J. Optimization, 8:46–76, 1998.

    MathSciNet  Google Scholar 

  54. M. Fu, C. de Souza, and Z. Luo. Finite-horizon robust Kalman filter design. IEEE Transactions on Signal Processing, 49(9):2103–2112, September 2001.

    Article  MathSciNet  Google Scholar 

  55. U. Feige and M. Goemans. Approximating the value of two prover proof systems, with applications to max 2sat and max dicut. In Proceedings of the 3nd Israel Symposium on Theory and Computing Systems, pages 182–189, 1995.

    Google Scholar 

  56. R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, December 1999.

    Google Scholar 

  57. A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut and max bisection. Algorithmica, 18:67–81, 1997.

    MathSciNet  MATH  Google Scholar 

  58. K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. SDPA (Semi-Definite Programming Algorithm) user’s manual—version 6.00. Technical report, Tokyo Insitute of Technology, July 2002.

    Google Scholar 

  59. U. Feige and M. Langberg. Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms, 41:174–211, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  60. U. Feige and M. Langberg. The rpr 2 rounding technique for semidefinte programs. In ICALP, Lecture Notes in Computer Science. Springer, Berlin, 2001.

    Google Scholar 

  61. R. Fourer. Nonlinear programming frequently asked questions. Web site: http://www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming%-iaq.html, 2000.

    Google Scholar 

  62. R. Freund. Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function. Mathematical Programming, 51:203–222, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  63. Frontline Systems, Inc. Premium Solver Platform (software package). Web site: http://www.solver.com, September 2004.

    Google Scholar 

  64. E. Fridman and U. Shaked. A new H filter design for linear time delay systems. IEEE Transactions on Signal Processing, 49(11):2839–2843, July 2001.

    Article  MathSciNet  Google Scholar 

  65. J. Geromel. Optimal linear filtering under parameter uncertainty. IEEE Transactions on Signal Processing, 47(1):168–175, January 1999.

    Article  MATH  MathSciNet  Google Scholar 

  66. O. Güler and R. Hauser. Self-scaled barrier functions on symmetric cones and their classification. Foundations of Computational Mathematics, 2:121–143, 2002.

    MathSciNet  MATH  Google Scholar 

  67. D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Technical report, Computational Optimization Research Center, Columbia University, March 2002. Web site: http://www.corc.ieor.columbia.edu/reports/techreports/tr-2002-03.pdf.

    Google Scholar 

  68. D. Goldfarb and G. Iyengar. Robust quadratically constrained problems program. Technical Report TR-2002-04, Department of IEOR, Columbia University, New York, NY USA, 2002.

    Google Scholar 

  69. P. Gill, W. Murray, and M. Saunders. SNOPT: An sqp algorithm for large-scale constrained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL 5.0: A FORTRAN package for nonlinear programming. Technical Report SOL 86-1, Systems Optimization Laboratory, Stanford University, July 1998. Web site: http://www.sbsi-sol-optimize.com/manuals/NPSOL%205-0%20Manual.p%df.

    Google Scholar 

  71. P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press, London, 1981.

    MATH  Google Scholar 

  72. J. Geromel and M. De Oliveira. H 2/H robust filtering for convex bounded uncertain systems. IEEE Transactions on Automatic Control, 46(1):100–107, January 2001.

    Article  MATH  Google Scholar 

  73. C. Gonzaga. Path following methods for linear programming. SIAM Review, 34(2):167–227, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  74. M. Grant. Disciplined Convex Programming. PhD thesis, Department of Electrical Engineering, Stanford University, December 2004.

    Google Scholar 

  75. D. Guo, L. Rasmussen, S. Sun, and T. Lim. A matrix-algebraic approach to linear parallel interference cancellation in CDMA. IEEE Transactions on Communications, 48(1):152–161, January 2000.

    Article  Google Scholar 

  76. G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Univ. Press, Baltimore, second edition, 1989.

    MATH  Google Scholar 

  77. M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Hershenson, S. Boyd, and T. Lee. Optimal design of a CMOS op-amp via geometric programming. IEEE Transactions on Computer-Aided Design, January 2001.

    Google Scholar 

  79. L. Huaizhong and M. Fu. A linear matrix inequality approach to robust H filtering. IEEE Transactions on Signal Processing, 45(9):2338–2350, September 1997.

    Article  Google Scholar 

  80. M. Hershenson, S. Mohan, S. Boyd, and T. Lee. Optimization of inductor circuits via geometric programming. In Proceedings 36th IEEE/ACM Integrated Circuit Design Automation Conference, 1999.

    Google Scholar 

  81. P. Hovland, B. Norris, and C. Bischof. ADIC (software package), November 2003. http://www-fp.mcs.anl.gov/adic/.

    Google Scholar 

  82. L. Han, J. Trinkle, and Z. Li. Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation, 16(6):663–674, December 2000.

    Article  Google Scholar 

  83. J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1993.

    Google Scholar 

  84. J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods, volume 306 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  85. Q. Han, Y. Ye, and J. Zhang. An improved rounding method and semidefinite programming relaxation for graph partition. Math. Programming, 92:509–535, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  86. F. Jarre, M. Kocvara, and J. Zowe. Optimal truss design by interior point methods. SIAM J. Optim., 8(4):1084–1107, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  87. F. Jarre and M. Saunders. A practical interior-point method for convex programming. SIAM Journal on Optimization, 5:149–171, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  88. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–395, 1984.

    MATH  MathSciNet  Google Scholar 

  89. M. Kojima, S. Mizuno, and A. Yoshise. An O(√nL)-iteration potential reduction algorithm for linear complementarity problems. Mathematical Programming, 50:331–342, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  90. J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems. In Proceedings of the 30th Symposium on Theory of Computation, pages 473–482, 1998.

    Google Scholar 

  91. J. Keuchel, C. Schnörr, C. Schellewald, and D. Cremers. Binary partitioning, perceptual grouping, and restoration with semidefinite programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11):1364–1379, November 2003.

    Article  Google Scholar 

  92. K. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solving primal and dual geometric progams. Mathematical Programming, 1:155–181, 1997.

    Article  MathSciNet  Google Scholar 

  93. K. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solving primal and dual geometric programs. Mathematical Programming, 76:155–182, 1997.

    Article  MathSciNet  Google Scholar 

  94. M. Kocvara, J. Zowe, and A. Nemirovski. Cascading-an approach to robust material optimization. Computers and Structures, 76:431–442, 2000.

    Article  Google Scholar 

  95. J. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal of Optimization, 11:796–817, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  96. J. Lasserre. Bounds on measures satisfying moment conditions. Annals of Applied Probability, 12:1114–1137, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  97. J. Lasserre. Semidefinite programming vs. LP relaxation for polynomial programming. Mathematics of Operations Research, 27(2):347–360, May 2002.

    Article  MATH  MathSciNet  Google Scholar 

  98. H. Lebret and S. Boyd. Antenna array pattern synthesis via convex optimization. IEEE Transactions on Signal Processing, 45(3):526–532, March 1997.

    Article  Google Scholar 

  99. Lindo Systems, Inc. LINGO version 8.0 (software package). Web site: http: //www.lindo.com, September 2004.

    Google Scholar 

  100. J. Löfberg. YALMIP verison 2.1 (software package). Web site: http://www.control.isy.liu.se/~johanl/yalmip.html, September 2001.

    Google Scholar 

  101. L. Lovasz. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1986.

    Google Scholar 

  102. Z.-Q. Luo, J. Sturm, and S. Zhang. Duality and self-duality for conic con-vex programming. Technical report, Department of Electrical and Computer Engineering, McMaster University, 1996.

    Google Scholar 

  103. W. Lu. A unified approach for the design of 2-D digital filters via semidefinite programming. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(6):814–826, June 2002.

    Article  MathSciNet  Google Scholar 

  104. M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming. Linear Algebra and its Applications, 284:193–228, November 1998. Special issue on Signals and Image Processing.

    Article  MathSciNet  MATH  Google Scholar 

  105. R. Monteiro and I. Adler. Interior path following primal-dual algorithms: Part I: Linear programming. Mathematical Programming, 44:27–41, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  106. The MathWorks, Inc. PRO-MATLAB User’s Guide. The MathWorks, Inc., 1990.

    Google Scholar 

  107. M. Mahmoud and A. Boujarwah. Robust H filtering for a class of linear parameter-varying systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(9):1131–1138, September 2001.

    Article  MathSciNet  MATH  Google Scholar 

  108. G. Millerioux and J. Daafouz. Global chaos synchronization and robust filtering in noisy context. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(10):1170–1176, October 2001.

    Article  MathSciNet  Google Scholar 

  109. N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor, Progress in Mathematical Programming: Interior Point and Related Methods, pages 131–158. Springer Verlag, New York, 1989. Identical version in: Proceedings of the 6th Mathematical Programming Symposium of Japan, Nagoya, Japan, 1–35, 1986.

    Google Scholar 

  110. MOSEK ApS. Mosek (software package). Web site: http://www.mosek.com, July 2001.

    Google Scholar 

  111. S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approximation algorithms. SIAM J. of Computing, 28:1641–1663, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  112. B. Murtaugh and M. Saunders. MINOS 5.5 user’s guide. Technical report, Systems Optimizaiton Laboratory, Stanford University, July 1998. Web site: http://www.sbsi-sol-optimize.com/manuals/Minos%205-5%20Manual.p%df.

    Google Scholar 

  113. J. Moré and D. Sorensen. NMTR (software package), March 2000. Web site: http://www-unix.mcs.anl.gov/~more/nmtr/.

    Google Scholar 

  114. M. Milanese and A. Vicino. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview. Automatica, 27(6):997–1009, November 1991.

    Article  MathSciNet  MATH  Google Scholar 

  115. Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization. Kluwer, Boston, 2004.

    MATH  Google Scholar 

  116. I. Nenov, D. Fylstra, and L. Kolev. Convexity determination in the microsoft excel solver using automatic differentiation techniques. In The 4th Internation Conference on Automatic Differentiation, 2004.

    Google Scholar 

  117. Yu. Nesterov and A. Nemirovsky. A general approach to polynomial-time algorithms design for convex programming. Technical report, Centr. Econ. & Math. Inst., USSR Acad. Sci., Moscow, USSR, 1988.

    Google Scholar 

  118. Yu. Nesterov and A. Nemirovsky. Interior-Point Polynomial Algorithms in Convex Programming: Theory and Algorithms, volume 13 of Studies in Applied Mathematics. Society of Industrial and Applied Mathematics (SIAM) Publications, Philadelphia, PA 19101, USA, 1993.

    Google Scholar 

  119. Yu. Nesterov, O. Pèton, and J.-Ph. Vial. Homogeneous analytic center cutting plane methods with approximate centers. In F. Potra, C. Roos, and T. Terlaky, editors, Optimization Methods and Software, pages 243–273, November 1999. Special Issue on Interior Point Methods.

    Google Scholar 

  120. S. Nash and A. Sofer. A barrier method for large-scale constrained optimization. ORSA Journal on Computing, 5:40–53, 1993.

    MathSciNet  MATH  Google Scholar 

  121. Yu. Nesterov and M. Todd. Self-scaled barriers and interior-point methods for convex programming. Mathematics of Operations Research, 22:1–42, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  122. J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research. Springer, New York, 1999.

    MATH  Google Scholar 

  123. D. Orban and R. Fourer. DrAmpl: a meta-solver for optimization. Technical report, Ecole Poytechnique de Montreal, 2004.

    Google Scholar 

  124. M. Overton and R. Womersley. On the sum of the largest eigenvalues of a symmetric matrix. SIAM Journal on Matrix Analysis and Applications, 13(1):41–45, January 1992.

    Article  MathSciNet  MATH  Google Scholar 

  125. P. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, Series B, 96(2):293–320, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  126. G. Pataki. Geometry of cone-optimization problems and semi-definite programs. Technical report, GSIA Carnegie Mellon University, Pittsburgh, PA, 1994.

    Google Scholar 

  127. J. Park, H. Cho, and D. Park. Design of GBSB neural associative memories using semidefinite programming. IEEE Transactions on Neural Networks, 10(4):946–950, July 1999.

    Article  Google Scholar 

  128. R. Palhares, C. de Souza, and P. Dias Peres. Robust H filtering for uncertain discrete-time state-delayed systems. IEEE Transactions on Signal Processing, 48(8):1696–1703, August 2001.

    Article  Google Scholar 

  129. R. Palhares and P. Peres. LMI approach to the mixed H 2/H filtering design for discrete-time uncertain systems. IEEE Transactions on Aerospace and Electronic Systems, 37(1):292–296, January 2001.

    Article  Google Scholar 

  130. S. Prajna, A. Papachristodoulou, and P. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2002. Available from http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/parrilo/sostools.

    Google Scholar 

  131. O. Pèton and J.-P. Vial. A tutorial on ACCPM: User’s guide for version 2.01. Technical Report 2000.5, HEC/Logilab, University of Geneva, March 2001. See also the http://ecolu-info.unige. ch/~logilab/software/accpm/accpm.html.

    Google Scholar 

  132. E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid fit. Journal of Intelligent and Robotic Systems, 18:105–126, 1997.

    Article  MATH  Google Scholar 

  133. J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming. Mathematical Programming, 40:59–93, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  134. B. Radig and S. Florczyk. Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision, pages 361–368. Springer, December 2001.

    Google Scholar 

  135. L. Rasmussen, T. Lim, and A. Johansson. A matrix-algebraic approach to successive interference cancellation in CDMA. IEEE Transactions on Communications, 48(1):145–151, January 2000.

    Article  Google Scholar 

  136. M. Rijckaert and X. Martens. Analysis and optimization of the williams-otto process by geometric programming. AIChE Journal, 20(4):742–750, July 1974.

    Article  Google Scholar 

  137. R. Rockafellar. Convex Analysis. Princeton Univ. Press, Princeton, New Jersey, second edition, 1970.

    MATH  Google Scholar 

  138. E. Rosenberg. Globally Convergent Algorithms for Convex Programming with Applications to Geometric Programming. PhD thesis, Department of Operations Research, Stanford University, 1979.

    Google Scholar 

  139. P. Stoica, T. McKelvey, and J. Mari. Ma estimation in polynomial time. IEEE Transactions on Signal Processing, 48(7): 1999–2012, July 2000.

    Article  MathSciNet  MATH  Google Scholar 

  140. J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-metric cones. Optimization Methods and Software, 11:625–653, 1999.

    MATH  MathSciNet  Google Scholar 

  141. J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vande-walle. Least squares support vector machines, 2002.

    Google Scholar 

  142. J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag, 1970.

    Google Scholar 

  143. U. Shaked, L. Xie, and Y. Soh. New approaches to robust minimum variance filter design. IEEE Transactions on Signal Processing, 49(11):2620–2629, November 2001.

    Article  MathSciNet  Google Scholar 

  144. H. Tuan, P. Apkarian, and T. Nguyen. Robust and reduced-order filtering: new LMI-based characterizations and methods. IEEE Transactions on Signal Processing, 49(12):2975–2984, December 2001.

    Article  Google Scholar 

  145. H. Tuan, P. Apkarian, T. Nguyen, and T. Narikiyo. Robust mixed H 2/H filtering of 2-D systems. IEEE Transactions on Signal Processing, 50(7):1759–1771, July 2002.

    Article  Google Scholar 

  146. C. Tseng and B. Chen. H , fuzzy estimation for a class of nonlinear discrete-time dynamic systems. IEEE Transactions on Signal Processing, 49(11):2605–2619, November 2001.

    Article  Google Scholar 

  147. The Mathworks, Inc. LMI control toolbox 1.0.8 (software package). Web site: http://www.mathworks.com/products/lmi, August 2002.

    Google Scholar 

  148. H. Tan and L. Rasmussen. The application of semidefinite programming for detection in CDMA. IEEE Journal on Selected Areas in Communications, 19(8):1442–1449, August 2001.

    Article  Google Scholar 

  149. T. Tsuchiya. A polynomial primal-dual path-following algorithm for second-order cone programming. Technical report, The Institute of Statistical Mathematics, Tokyo, Japan, October 1997.

    Google Scholar 

  150. Z. Tan, Y. Soh, and L. Xie. Envelope-constrained H filter design: an LMI optimization approach. IEEE Transactions on Signal Processing, 48(10):2960–2963, October 2000.

    Article  MathSciNet  MATH  Google Scholar 

  151. Z. Tan, Y. Soh, and L. Xie. Envelope-constrained H FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(1):79–82, January 2000.

    Article  MATH  Google Scholar 

  152. R. Tütüncü, K. Toh, and M. Todd. SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming, version 3.0. Technical report, Carnegie Mello University, August 2001.

    Google Scholar 

  153. R. Tapia, Y. Zhang, and L. Velazquez. On convergence of minimization methods: Attraction, repulsion and selection. Journal of Optimization Theory and Applications, 107:529–546, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  154. R. Vanderbei. LOQO user’s manual—version 4.05. Technical report, Operations Research and Financial Engineering, Princeton University, October 2000.

    Google Scholar 

  155. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, March 1996.

    Article  MathSciNet  MATH  Google Scholar 

  156. R. Vanderbei and H. Benson. On forumulating semidefinite programming problems as smooth convex nonlinear optimization problems. Technical Report ORFE-99-01, Operations Research and Financial Engineering, Princeton University, January 2000.

    Google Scholar 

  157. L. Vandenberghe, S. Boyd, and A. El Gamal. Optimal wire and transistor sizing for circuits with non-tree topology. In Proceedings of the 1997 IEEE/ACM International Conference on Computer Aided Design, pages 252–259, 1997.

    Google Scholar 

  158. L. Vandenberghe, S. Boyd, and A. El Gamal. Optimizing dominant time constant in RC circuits. IEEE Transactions on Computer-Aided Design, 2(2): 110–125, February 1998.

    Article  Google Scholar 

  159. S.-P. Wu and S. Boyd. SDPSOL: A parser/solver for semidefinite programs with matrix structure. In L. El Ghaoui and S.-I. Niculescu, editors, Recent Advances in LMI Methods for Control, chapter 4, pages 79–91. SIAM, 2000.

    Google Scholar 

  160. F. Wang and V. Balakrishnan. Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties. IEEE Transactions on Signal Processing, 50(4):803–813, April 2002.

    Article  MathSciNet  Google Scholar 

  161. S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via spectral factorization and convex optimization. In B. Datta, editor, Applied and Computational Control, Signals, and Circuits, volume 1, pages 215–245. Birkhauser, 1998.

    Google Scholar 

  162. M. Wright. Some properties of the Hessian of the logarithmic barrier function. Mathematical Programming, 67:265–295, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  163. S. Wright. Primal Dual Interior Point Methods. Society of Industrial and Applied Mathematics (SIAM) Publications, Philadelphia, PA 19101, USA, 1999.

    Google Scholar 

  164. J. Weickert and Christoph Schnörr. A theoretical framework for convex regularizers in pde-based computation of image motion. International Journal of Computer Vision, Band 45, 3:245–264, 2001.

    Article  Google Scholar 

  165. S. Wang, L. Xie, and C. Zhang. H2 optimal inverse of periodic FIR digital filters. IEEE Transactions on Signal Processing, 48(9):2696–2700, September 2000.

    Article  Google Scholar 

  166. Y. Ye. Interior-point algorithms: Theory and practice. John Wiley & Sons, New York, NY, 1997.

    Google Scholar 

  167. Y. Ye. A path to the arrow-debreu competitive market equilibrium. Technical report, Stanford University, February 2004. Web site: http://www.stanford. edu/~yyye/arrow-debreu2.pdf.

    Google Scholar 

  168. F. Yang and Y. Hung. Robust mixed H 2/H filtering with regional pole assignment for uncertain discrete-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(8): 1236–1241, August 2002.

    Article  MathSciNet  Google Scholar 

  169. Y. Ye, M. Todd, and S. Mizuno. An O(√nL)-iteration homogeneous and self-dual linear programming algorithm. Mathematics of Operations Research, 19(1):53–67, 1994.

    MathSciNet  MATH  Google Scholar 

  170. Y. Ye and J. Zhang. Approximation for dense-n/2-subgraph and the complement of min-bisection. Manuscript, 1999.

    Google Scholar 

  171. S. Zhang. A new self-dual embedding method for convex programming. Technical report, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, October 2001.

    Google Scholar 

  172. M. Zibulevsky. Pattern recognition via support vector machine with computationally efficient nonlinear transform. Technical report, The University of New Mexico, Computer Science Department, 1998. Web site: http: //iew3.technion.ac.il/~mcib/nipspsvm.ps.gz.

    Google Scholar 

  173. J. Zowe, M. Kocvara, and M. Bendsoe. Free material optimization via mathematical programming. Mathematical Programming, 9:445–466, 1997.

    Article  MathSciNet  Google Scholar 

  174. U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other problems. In Proceedings of the 31th Symposium on Theory of Computation, pages 679–687, 1999.

    Google Scholar 

  175. H. Zhou, L. Xie, and C. Zhang. A direct approach to H 2 optimal deconvolution of periodic digital channels. IEEE Transactions on Signal Processing, 50(7):1685–1698, July 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Grant, M., Boyd, S., Ye, Y. (2006). Disciplined Convex Programming. In: Liberti, L., Maculan, N. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 84. Springer, Boston, MA. https://doi.org/10.1007/0-387-30528-9_7

Download citation

Publish with us

Policies and ethics