Skip to main content

Solving Nonlinear Mixed Integer Stochastic Problems: a Global Perspective

  • Chapter
Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 84))

Summary

In this paper, we present a novel approach for solving nonlinear mixed integer stochastic programming problems. In particular, we consider two stage stochastic problem with nonlinearities both in the objective function and constraints, pure integer first stage and mixed-integer second stage variables. We formulate the problem by a scenario based representation, adding linear nonanticipativity constraints coming from splitting the first stage decision variables. In the separation phase we fully exploit the partial decomposable structure of SMINLPs. This allows to deal with a separable nondifferentiable problem, which can be solved by Lagrangian dual based procedure. In particular, we propose a specialization of the Randomized Incremental Subgradient Method- proposed by Bertsekas(2001)- which takes dynamically into account the information relative to the scenarios. The coordination phase is aimed at enforcing coordination among the solutions of the scenario subproblems. More specifically, we use a branch and bound in order to enforce the feasibility of the relaxed nonanticipativity constraints. In order to make more efficient the over-all method, we embed the Lagrangian iteration in a branch and bound scheme, by avoiding the exact solution of the dual problem and we propose an early branching rule and a worm start procedure to use within the Branch and Bound tree. Although SMINLPs have many application contexts, this class of problem has not been adequately treated in the literature. We propose a stochastic formulation of the Trim Loss Problem, which is new in the literature. A formal mathematical formulation is provided in the framework of two-stage stochastic programming which explicitly takes into account the uncertainty in the demand. Preliminary computational results illustrate the ability of the proposed method to determine the global optimum significantly decreasing the solution time. Furthermore, the proposed approach is able to solve instances of the problem intractable with conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.S Adjiman, I.P Androulakis, and C.A. Floudas. Global Optimization of Mixed Integer Nonlinear Problems. AIChE Journal, 46:1769–1797, 2000.

    Article  Google Scholar 

  2. J. Acevedo and E.N. Pistikopoulos. A parametric MINLP algorithm for process synthesis problems under uncertainty. Industrial and Engineering Chemistry Research, 35(1):147–158, 1996.

    Article  Google Scholar 

  3. J. Acevedo and E.N. Pistikopoulos. Stochastic optimization based algorithms for process synthesis under uncertainty. Computers and Chemical Engineering, 22(4/5):647–671, 1998.

    Article  Google Scholar 

  4. F. Bastin. Nonlinear stochastic Programming. Ph.D. thesis, Faculté des Sciences — Facultés Universitaires Notre-Dame de la Paix, NAMUR (Belgium), August 2001.

    Google Scholar 

  5. D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second edition, 1999.

    MATH  Google Scholar 

  6. J.R. Birge. Stochastic Programming Computation and Applications. INFORMS Journal on Computing, 9(2):111–133, 1997.

    MATH  MathSciNet  Google Scholar 

  7. J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming. Springer Series on Operations Research, Ney York, Berlin, Heidelberg, 1997.

    MATH  Google Scholar 

  8. B. Borchers and J.E. Mitchell. An improved Branch and Bound Algorithm for Mixed Integer Nonlinear Programs. Computers and Operations Research, 21(4):359–367, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.P. Bertsekas and A. Nedic. Incremental Subgradient Methods for Nondifferentiable Optimization. SIAM Journal on Optimization, 12:109–138, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  10. Maria Elena Bruni. Mixed Integer nonlinear Stochastic Programming. Ph. D. dissertation, University of Calabria, Cosenza (Italy), 2005.

    Google Scholar 

  11. C.C. Carøe and R. Schultz. Dual Decomposition in Stochastic Integer Programming. Operations Research Letters, 24:37–45, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Charnes and W.W. Cooper. Chance-constrained programming. Management Science, 5:73–79, 1959.

    MathSciNet  Google Scholar 

  13. C. Chen, S. Hart, and V. Tham. A Simulated Annealing heuristic for the one-dimensional cutting stock problem. European Journal of Operational Research, 93(3):522–535, 1996.

    Article  MATH  Google Scholar 

  14. GAMS Development Corporation. GAMS IDE Model Library. 1217 Potomac Street, NW Washington, DC 20007, USA., 2005. web: www.gams.com.

    Google Scholar 

  15. G.B. Dantzig. Linear programming under uncertainty. Management Science, 1:197–206, 1955.

    MATH  MathSciNet  Google Scholar 

  16. J.M. Valerio de Carvalho. Exact solution of one-dimensional cutting stock problems using column generation and branch and bound. International Transactions in Operational Research, 5(1):35–44, 1998.

    Article  MATH  Google Scholar 

  17. D. Dentcheva and S. Romisch. Duality in nonconvex stochastic programming. Stochastic Programming E-Print series 2002-13, 2002.

    Google Scholar 

  18. H. Dyckhoff. A typology of cutting and packing problems. European Journal of Operational Research, 1(44):145–159, 1990.

    Article  MathSciNet  Google Scholar 

  19. Thomas G.W. Epperly, M.G. Ierapertritou, and E.N. Pistikopoulos. On the global and efficient solution of stochastic batch plant design problems. Computers and Chemical Engineering, 21(12):1411–1431, 1997.

    Article  Google Scholar 

  20. R. Fourer and D. Gay. Implementing algorithms through AMPL scripts. http://www.ampl.com/cm/cs/what/ampl/NEW/LOOP2/index.html, 1999.

    Google Scholar 

  21. R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by Outer Approximation. Mathematical Programming, 66:327–349, 1994.

    Article  MathSciNet  Google Scholar 

  22. Deutsche Forschungsgemeinschaft. http://www-iam.mathematik.huberlin.de/eopt/, June 2003.

    Google Scholar 

  23. C. A. Floudas, P. M. Pardalos, C. S. Adjiman and W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer, and C. A. Schweiger. Handbook of Test Problems in Local and Global Optimization. Kluwer, Dordrecht, 1999.

    MATH  Google Scholar 

  24. H. Foerster and G. Wascher. Simulated Annealing for order spread minimization in sequencing cutting patterns. European Journal of Operational Research, 110(2):272–282, 1998.

    Article  MATH  Google Scholar 

  25. A.M. Geoffrion. Generalized Benders Decomposition. Journal of Optimization Theory and Applications, 10(4):237–260, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Guignard and S. Kim. Lagrangean Decomposition: A Model Yielding Stronger Lagrangean Bounds. Mathematical Programming, 39:215–228, 1987.

    MathSciNet  MATH  Google Scholar 

  27. Raymond Hemmecke and Rudiger Schultz. Decomposition methods for two-stage stochastic integer programs. In Online optimization of large scale systems, pages 601–622. Springer, Berlin, 2001.

    Google Scholar 

  28. I. Harjunkoski, T. Westerlund, R. Porn, and H. Skrifvars. Different formulations for Solving Trim Loss Problems in a Paper-Converting Mill with ILP. Computers and Chemical Engineering, 20:s121–s126, May 1996.

    Article  Google Scholar 

  29. M.G. Ierapetrirou, J. Acevedo, and E.N. Pistikopoulos. An optimization approach for process engineering problems under uncertainty. Computers and Chemical Engineering, 6–7, June–July 1996.

    Google Scholar 

  30. Lindo System Inc. Optimization Modeling with Lingo. North Dayton Street Chicago, Illinois, fourth edition, 2000.

    Google Scholar 

  31. Lindo System Inc. Lindo API. The premier Optimization Engine. North Dayton Street Chicago, Illinois 60622, July 2003.

    Google Scholar 

  32. M.G. Ierapetritou and E.N. Pistikopoulos. Simultaneus incorporation of flexibility and economic risk in operational planning under uncertainty. Industrial and Engineering Chemistry Research, 35(2):772–787, 1994.

    Google Scholar 

  33. M.G. Ierapetritou and E.N. Pistikopoulos. Novel approach for optimal process design under uncertainty. Computers and Chemical Engineering, 19(10):1089–1110, 1995.

    Article  Google Scholar 

  34. M.G. Ierapetritou and E.N. Pistikopoulos. Batch Plant Design and Operations Under Uncertainty. Industrial and Engineering Chemistry Research, 35:772–787, 1996.

    Article  Google Scholar 

  35. M.G. Ierapetritou, E.N. Pistikopoulos, and C.A. Floudas. Operational Planning Under Unceratinty. Computers and Chemical Engineering, 20(12):1499–1516, 1996.

    Article  Google Scholar 

  36. L. Jenkins. Parametric Mixed-Integer Programming: An Application to Solid Waste Management. Management Science, 28:1270–1284, 1982.

    Article  MATH  Google Scholar 

  37. G. R. Kocis and I. E. Grossmann. Relaxation Strategy for the Structural Optimization of Process Flow Sheets. Industrial and Engineering Chemistry Research, 26:1869–1880, 1987.

    Article  Google Scholar 

  38. K.C. Kiwiel. Proximity Control in Bundle Methods for Convex Nondifferentiable Optimization. Mathematical Programming, 46:105–122, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  39. P. Kall and S.W. Wallace. Stochastic Programming. John Wiley and Sons, Chichester, NY, Brisbane, Toronto, Singapore, 1994.

    MATH  Google Scholar 

  40. Sandia National Laboratories. http://www.cs.sandia.gov/opt/survey/main.html, March 1997.

    Google Scholar 

  41. S. Leyffer. Integrating SQP and Branch and Bound for Mixed Integer Nonlinear Programming. Computational Optimization and Applications, 18:295–309, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Leuba and D. Morton. Generating stochastic linear programs in S-MPS format with GAMS. In Proceedings INFORMS Conference, Atlanta., 1996.

    Google Scholar 

  43. P. Mahey. Decomposition methods for mathematical programming. In P. Pardalos and Resende M., editors, Handbook of Applied Optimization. Oxford University Press, 198 Madison Avenue, Ney York, 10016, 2002.

    Google Scholar 

  44. L. Marshall and Fisher. The Lagrangian relaxation method for solving integer programming problems. Management Science, 27(1):1–18, 1981.

    MathSciNet  MATH  Google Scholar 

  45. Hans D. Mittelmann. http://plato.asu.edu/topics/benchm.html, February 2005.

    Google Scholar 

  46. I. Nowakz, H. Alperin, and S. Vigerske. LAGO-an Object Oriented Library for solving MINLP. URL:http://www.mathematik.huberlin.de/eopt/papers/LaGO.pdf, 2003.

    Google Scholar 

  47. A. Neumaier. Complete search in continuous global optimization and constraint satisfaction. In A. Iserles, editor, Acta Numerica, pages 271–369. Cambridge University Press, 2004.

    Google Scholar 

  48. A. Neumaier. http://solon.cma.univie.ac.at/neum/glopt.html., 2005.

    Google Scholar 

  49. M. Näsberg, K.O. Jönstern, and P.A. Smeds. Variable Splitting-a new Lagrangian relaxation approach to some mathematical programming problems. Report, Linköping University., 1985.

    Google Scholar 

  50. A. Pertsinidis. On the parametric optimization of mathematical programs with binary variables and its application in the chemical engineering process synthesis. Ph.D. dissertation, Carnegie-Mellon University, Pittsburgh, PA, 1992.

    Google Scholar 

  51. E.G. Paules and C.A. Floudas. Stochastic programming in process synthesis: a Two-Stage model with MINLP recourse for multiperiod heat-integrated distillation sequences. Computers and Chemical Engineering, 16(3):189–210, 1992.

    Article  Google Scholar 

  52. E.N. Pistikopoulos. Uncertainty in process design and operations. Computers and Chemical Engineering, 19:s553–s563, 1995.

    Article  Google Scholar 

  53. A. Prékopa. Stochastic Programming. Kluwer, Dordrecht, 1995.

    Google Scholar 

  54. W. Römisch and R. Schultz. Multi-stage stochastic integer programs: An introduction. In M. Grtchel, S.O. Krumke, and J. Rambau, editors, Online Optimization of Large Scale Systems, pages 581–600. Springer, Berlin, 2001.

    Google Scholar 

  55. A. Ruszczyński. Decomposition Methods in Stochastic Programming. Mathematical Programming, 79:333–353, 1997.

    Article  MathSciNet  Google Scholar 

  56. H. Schichl. The coconut environment. web site. http://www.mat.univie.ac.at/coconut-environment/, 2004.

    Google Scholar 

  57. S. Sen. Stochastic programming: Computational issues and challenges. In S. Gass and C. Harris, editors, Encyclopedia of OR/MS. Kluwer, Dordrecht, 2001.

    Google Scholar 

  58. S. Takriti and J.R. Birge. Lagrangean Solution Techniques and Bounds for Loosely Coupled Mixed-Integer Stochastic Programs. Operations Research, 48(1):91–98, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  59. F. Vance. Branch-and-price algorithms for the one-dimensional cutting stock problem. Computational Optimization and Applications, 9(3):212–228, 1998.

    Article  MathSciNet  Google Scholar 

  60. F. Vanderbeck. Computational study of a column generation algorithm for bin packing and cutting stock problems. Mathematical Programming, 86:565–594, 200.

    Google Scholar 

  61. G. Washer. An LP-based approach to cutting stock problems with multiple objectives. European Journal of Operational Research, 44:175–184, 1990.

    Article  MathSciNet  Google Scholar 

  62. I. Harjunkoski T. Westerlund, J. Isaksson, and H. Skrifvars. Different transformations for Solving Nonconvex Trim Loss Problems by MINLP. European Journal of Operational Research, 105(3):594–603, 1998.

    Article  MATH  Google Scholar 

  63. J. Wei and J. Realff. Sample Average Approximation Methods for Stochastic MINLPs. Computers and Chemical Engineering, 28(3):333–346, 2004.

    Article  Google Scholar 

  64. J. W. Yen and J. R. Birge. A stochastic programming approach to the airline crew scheduling problem. Technical report, Industrial Engineering and Management Sciences, Northwestern University. URL: http://users.iems.nwu.edU/~jrbirge//Public/html/new.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bruni, M.E. (2006). Solving Nonlinear Mixed Integer Stochastic Problems: a Global Perspective. In: Liberti, L., Maculan, N. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 84. Springer, Boston, MA. https://doi.org/10.1007/0-387-30528-9_4

Download citation

Publish with us

Policies and ethics