Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 85))

  • 631 Accesses

6. Concluding Remarks

For technical convenience, in numerical implementations of all methods presented above set Λ is usually transformed to the following form \( \bar \Lambda = \{ \lambda \in \mathcal{R}^k |\lambda _i > 0,i = 1,...,k,\Sigma _{i = 1}^k \lambda _i = 1\}\). This is achieved by dividing each component of λ by the sum of all components of that λ, for all λ ∈ Λ. There is an obvious one-to-one correspondence between Λ and \( \bar \Lambda\).

It is astonishing but fortunately true that the multitude of interactive MCDM methods fall just to one of three classes which correspond to three types of characterizations presented in Chapter 3. This not only allows simple presenting and smooth “marketing” the field of MCDM to potential users, but has some methodological and technical consequences for the way interactive MCDM methods can be implemented and applied in practice. In particular, the general outline of interactive MCDM methods given in this chapter is sufficient for presenting in Chapter 6 the Generic Decision Supporting Scheme.

Interactive MCDM methods are “soft” in the sense that they deny rigorous formal convergence considerations. The rationale behind this type of methods is an assumption, strongly supported by evidence from practical applications (real, not academic), that there is noway to encapsulate DM preferences into a formal, consistent, and verifiable framework. If so, the convergence issues are to be left to experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. Annotated References

  • Armann R., (1989), Solving multiobjective programming problems by discrete representation. Optimization, 20, 483–492.

    MATH  MathSciNet  Google Scholar 

  • Benayoun R., de Montgolfier J., Laritchev O., (1971), Linear programming with multiple objective functions: Step Method (STEM). Mathematical Programming, 1, 366–375.

    Article  Google Scholar 

  • Buchanan J.T., (1997), A naïve approach for solving MCDM problems: the GUES method. Journal of Operational Research Society, 48, 202–206.

    Article  MATH  Google Scholar 

  • Chankong V., Haimes Y.Y., (1978), The interactive surrogate worth trade-off (ISWT) method for muliobjective decision-making. In: Multiple Criteria Problem Solving, (Zionts S., ed.), Lecture Notes in Economics and Mathematical Systems, 155, Springer-Verlag, Berlin, 42–67.

    Google Scholar 

  • Chankong V., Haimes Y.Y., (1983), Multiobjective Decision Making Theory and Methodology. Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Dell R.F., Karwan M.H., (1990), An interactive MCDM weight space reduction method utilizing a Tchebycheff utility function. Naval Research Logistics, 37, 263–277.

    MathSciNet  Google Scholar 

  • Edwards W., (ed.), (1992), Utility Theories: Measurements and Applications. Kluwer, Boston.

    Google Scholar 

  • Fishburn P.C., (1986), Utility Theory for Decision Making. JohnWiley & Sons, New York.

    Google Scholar 

  • Gal T., Stewart Th., Hanne Th., (eds.), (1999), Multicriteria Decision Making-Advances in MCDM: Models, Algorithms, Theory and Applications. Kluwer Academic Publishers.

    Google Scholar 

  • Geoffrion A.M., Dyer J.S., Feinberg A., (1972), An interactive approach to muliti-criterion optimization with an application to the operation of an academic department. Management Science, 19, 357–368.

    Google Scholar 

  • Haimes Y.Y., Lasdon L.S., Wismer D.A., (1971), On bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man and Cybernetics, 1, 296–297.

    Article  MathSciNet  Google Scholar 

  • Jaszkiewicz A., Słowiński R., (1994), The light-beam search over a nondominated surface of a multiple-objective problem. In: Multiple Criteria Decision Making — Proceedings of Tenth International Conference: Expand and Enrich the Domains of Thinking and Application, (Thzeng G.H., Wand H.F., Wen U.P., Yu P.L, eds.), Springer-Verlag, Berlin, 87–99.

    Google Scholar 

  • Jaszkiewicz A., Słowiński R., (1995), The light-beam search-outranking based interactive procedure for multiple-objective mathematical programming. In: Advances in Multicriteria Analysis (Pardalos P.M., Siskos Y., Zopoundis C., eds.), Kluwer Academic Publishers, Dordrecht, 129–146.

    Google Scholar 

  • Kaliszewski I., Zionts S., (2004), Generalization of the Zionts-Wallenius multicriteria decision making algorithm. Control & Cybernetics, 3, 477–500.

    MathSciNet  Google Scholar 

  • Korhonen P., Laakso J., (1984), A visual interactive method for solving the multiple-criteria problem. In: Interactive Decision Analysis, (Grauer M., Wierzbicki A.P., eds.), Lecture Notes in Economics and Mathematical Systems, 229, Springer-Verlag, Berlin, 146–153.

    Google Scholar 

  • Korhonen P., Laakso J., (1985), On developing a visual interactive multiple criteria method — an outline. In: Decision Making with Multiple Objectives, (Haimes Y.Y., Chankong V., eds.), Lecture Notes in Economics and Mathematical Systems, 242, Springer-Verlag, Berlin, 272–281.

    Google Scholar 

  • Korhonen P., Laakso J., (1986), A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, 24, 227–287.

    MathSciNet  Google Scholar 

  • Korhonen P., (1988), A visual reference direction approach to solving discrete multiple criteria problems. European Journal of Operations Research, 34, 152–159.

    Article  Google Scholar 

  • Michalowski W., (1988), Use of the displaced worst compromise in interactive multiobjective programming. IEEE Transactions on Systems, Man, and Cybernetics, 18, 472–477.

    Article  MathSciNet  Google Scholar 

  • Michalowski W., Szapiro T., (1989), A procedure for worst outcomes displacement in multiple criteria decision making. Computers and Operations Research, 16, 195–206.

    Article  MathSciNet  Google Scholar 

  • Michalowski W., Szapiro T., (1992), A bi-reference procedure for interactive multiple criteria programming. Operations Research, 40, 247–258.

    Article  Google Scholar 

  • Miettinen K.M., (1999), Nonlinear multiobjective optimization. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Miettinen K.M., Mäkelä M.M., (1995), Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization, 34, 231–246.

    MathSciNet  Google Scholar 

  • Miettinen K.,M., Mäkelä M.M., (1997), Interactive method NIMBUS for non-differentiable multiobjective optimization problems. In: Multicriteria Analysis (Clímaco J., ed.), Springer-Verlag, 310–319.

    Google Scholar 

  • Nakayama H., Nomura J., Sawada K., Nakajima R., (1986), An application of satisficing trade-off method to a blending problem of industrial materials. In: Large-Scale Modelling and Interactive Decision Analysis (Fandel G., Grauer M., Kurzhanski A., Wierzbicki A.P., eds.), Lecture Notes in Economics and Mathematical Systems, 273, Springer-Verlag, Berlin, 303–313.

    Google Scholar 

  • Nakayama H., (1989), Sensitivity and trade-off analysis in multiple objective programming. In: Methodology and Software for Interactive Decision Support, (Lewandowski A., Stanchev I., eds.), Lecture Notes in Economics and Mathematical Systems, 337, Springer-Verlag, Berlin, 86–93.

    Google Scholar 

  • Nakayama H., (1995), Aspiration level approach to interactive multi-objective programming and its applications. In: Advances in Multicriteria Analysis (Pardalos P.M., Siskos Y., Zopoundis C., eds.), Kluwer Academic Publishers, Dordrecht, 147–174.

    Google Scholar 

  • Nakayama H., Furukawa K., (1985), Satisficing trade-off method with an application to multiobjective structural design. Large Scale Systems, 8, 47–57.

    Google Scholar 

  • Nakayama H., Sawaragi Y., (1984), Satisfacing trade-off method for multiobjective programming. In: Interactive Decision Analysis (Grauer M., Wierzbicki A.P., eds.), Lecture Notes in Economics and Mathematical Systems, 229, Springer-Verlag, Berlin, 113–122.

    Google Scholar 

  • Narula S.C., Kirilov L., Vassilev V., (1994a), An interactive algorithm for solving multiple objective nonlinear programming problems. In: Multiple Criteria Decision Making-Proceedings of the Tenth International Conference: Expand and Enrich the Domains of Thinking and Application (Thzeng G.H., Wand H.F., Wen U.P., Yu P.L., eds.), Springer-Verlag, Berlin, 119–127.

    Google Scholar 

  • Narula S.C., Kirilov L., Vassilev V., (1994b), Reference direction approach for solving multiple objective nonlinear programming problems. IEEE Transactions on Systems, Man, and Cybernetics, 24, 804–806.

    Article  MathSciNet  Google Scholar 

  • Roy A., Wallenius J., (1991), Nonlinear and unconstrained multiple-objective optimization: algorithm, computation, and application. Naval Research Logistics, 38, 623–635.

    MathSciNet  Google Scholar 

  • Sakawa M., (1982), Interactive mulitiobjective decision making by the Sequental Proxy Optimization Technique: SPOT. European Journal of Operational Research, 9, 386–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Steuer R.E. (1986), Multiple Criteria Optimization: Theory, Computation and Application. John Wiley & Sons, New York.

    Google Scholar 

  • Steuer R.E., Choo E.U., (1983), An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26, 326–344.

    MathSciNet  Google Scholar 

  • Wierzbicki A.P., (1980), The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making; Theory and Applications, (Fandel G., Gal T., eds.), Lecture Notes in Economics and Mathematical Systems, 177, Springer Verlag, Berlin, 468–486.

    Google Scholar 

  • Wierzbicki A.P., (1986), On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum, 8, 73–87.

    MATH  MathSciNet  Google Scholar 

  • Wierzbicki A.P., (1990), Multiple criteria solutions in noncooperative game theory, Part III: Theoretical Foundations. Discussion Paper 288, Kyoto Institute of Economic Research, Kyoto University, Kyoto.

    Google Scholar 

  • Wierzbicki A.P., (1999), Reference point approaches. In: Multicriteria Decision Making-Advances in MCDM: Models, Algorithms, Theory and Applications (Gal T., Stewart Th., Hanne Th., eds.), Kluwer Academic Publishers.

    Google Scholar 

  • Zeleny M., (1976), The theory of displaced ideal. In: Multiple Criteria Decision Making Kyoto 1975, (Zeleny M., ed.), Lecture Notes in Economics and Mathematical Systems, 123, Springer Verlag, Berlin, 153–206.

    Google Scholar 

  • Zeleny M., (1982), Multiple Criteria Decision Making. McGraw-Hill, Inc.

    Google Scholar 

  • Zionts S., Wallenius J., (1976), An interactive programming method for solving the multiple criteria problem. Management Science, 22, 652–663.

    Google Scholar 

  • Zionts S., Walenius J., (1983), An interactive multiple objective linear programming method for a class of underlying nonlinear value functions. Management Science, 29, 519–529.

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). MCDM Interactive Methods - An Overview. In: Soft Computing For Complex Multiple Criteria Decision Making. International Series in Operations Research & Management Science, vol 85. Springer, Boston, MA. https://doi.org/10.1007/0-387-30177-1_4

Download citation

Publish with us

Policies and ethics