Skip to main content
Book cover

Brain Repair pp 191–220Cite as

Role of Endogenous Neural Stem Cells in Neurological Disease and Brain Repair

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 557))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rietze RL, Valcanis H, Brooker GF et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001; 412(6848):736–9.

    PubMed  CAS  Google Scholar 

  2. Temple S. The development of neural stem cells. Nature 2001; 414(6859):112–7.

    PubMed  CAS  Google Scholar 

  3. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255(5052):1707–10.

    PubMed  CAS  Google Scholar 

  4. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci 2002; 22(3):629–34.

    PubMed  CAS  Google Scholar 

  5. Alvarez-Buylla A, Herrera DG, Wichterle H. The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 2000; 127:1–11.

    PubMed  CAS  Google Scholar 

  6. Goldman SA, Nedergaard M, Crystal RG et al. Neural precursors and neuronal production in the adult mammalian forebrain. Ann N Y Acad Sci 1997; 835:30–55.

    PubMed  CAS  Google Scholar 

  7. Martens DJ, Tropepe V, van Der Kooy D. Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. J Neurosci 2000; 20(3):1085–95.

    PubMed  CAS  Google Scholar 

  8. Chiasson BJ, Tropepe V, Morshead CM et al. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 1999; 19(11):4462–71.

    PubMed  CAS  Google Scholar 

  9. Ray J, Peterson DA, Schinstine M et al. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci USA 1993; 90(8):3602–6.

    PubMed  CAS  Google Scholar 

  10. Palmer TD, Markakis EA, Willhoite AR et al. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999; 19(19):8487–97.

    PubMed  CAS  Google Scholar 

  11. Gage FH. Mammalian neural stem cells. Science 2000; 287(5457):1433–8.

    PubMed  CAS  Google Scholar 

  12. Palmer TD, Ray J, Gage FH. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 1995; 6(5):474–86.

    PubMed  CAS  Google Scholar 

  13. Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000; 289(5485):1754–7.

    PubMed  CAS  Google Scholar 

  14. Shihabuddin LS, Horner PJ, Ray J et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000; 20(23):8727–35.

    PubMed  CAS  Google Scholar 

  15. Tropepe V, Coles BL, Chiasson BJ et al. Retinal stem cells in the adult mammalian eye. Science 2000; 287(5460):2032–6.

    PubMed  CAS  Google Scholar 

  16. Reh TA, Levine EM. Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 1998; 36(2):206–20.

    PubMed  CAS  Google Scholar 

  17. Bjornson CR, Rietze RL, Reynolds BA et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283(5401):534–7.

    PubMed  CAS  Google Scholar 

  18. Johansson CB, Momma S, Clarke DL et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999; 96(1):25–34.

    PubMed  CAS  Google Scholar 

  19. Morshead CM, Benveniste P, Iscove NN et al. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 2002; 8(3):268–73.

    PubMed  CAS  Google Scholar 

  20. Mezey E, Chandross KJ, Harta G et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290(5497):1779–82.

    PubMed  CAS  Google Scholar 

  21. Brazelton TR, Rossi FM, Keshet GI et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290(5497):1775–9.

    PubMed  CAS  Google Scholar 

  22. Priller J, Persons DA, Klett FF et al. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 2001; 155(5):733–8.

    PubMed  CAS  Google Scholar 

  23. Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med 2001; 7(4):393–5.

    PubMed  CAS  Google Scholar 

  24. Anderson DJ. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 2001; 30(1):19–35.

    PubMed  CAS  Google Scholar 

  25. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science 1996; 271(5251):978–81.

    PubMed  CAS  Google Scholar 

  26. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993; 11(1):173–89.

    PubMed  CAS  Google Scholar 

  27. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124(3):319–35.

    PubMed  CAS  Google Scholar 

  28. Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 1977; 197(4308):1092–4.

    PubMed  CAS  Google Scholar 

  29. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001; 435(4):406–17.

    PubMed  CAS  Google Scholar 

  30. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16(6):2027–33.

    PubMed  CAS  Google Scholar 

  31. Stanfield BB, Trice JE. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 1988; 72(2):399–406.

    PubMed  CAS  Google Scholar 

  32. Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 1999; 406(4):449–60.

    PubMed  CAS  Google Scholar 

  33. Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol 1999; 413(1):146–54.

    PubMed  CAS  Google Scholar 

  34. van Praag H, Schinder AF, Christie BR et al. Functional neurogenesis in the adult hippocampus. Nature 2002; 415(6875):1030–4.

    PubMed  Google Scholar 

  35. Kempermann G. Regulation of adult hippocampal neurogenesis — implications for novel theories of major depression. Bipolar disorders 2002; 4:17–33.

    PubMed  Google Scholar 

  36. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997; 8(6):389–404.

    PubMed  CAS  Google Scholar 

  37. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175(1):1–13.

    PubMed  CAS  Google Scholar 

  38. Ciccolini F, Svendsen CN. Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci 1998; 18(19):7869–80.

    PubMed  CAS  Google Scholar 

  39. Caldwell MA, He X, Wilkie N et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 2001; 19(5):475–9.

    PubMed  CAS  Google Scholar 

  40. Temple S. CNS development: The obscure origins of adult stem cells. Curr Biol 1999;9(11):R397–9.

    PubMed  CAS  Google Scholar 

  41. Ostenfeld T, Joly E, Tai YT et al. Regional specification of rodent and human neurospheres. Brain Res Dev Brain Res 2002; 134(1–2):43–55.

    PubMed  CAS  Google Scholar 

  42. Hitoshi S, Tropepe V, Ekker M et al. Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 2002; 129(1):233–44.

    PubMed  CAS  Google Scholar 

  43. Johe KK, Hazel TG, Muller T et al. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 1996; 10(24):3129–40.

    PubMed  CAS  Google Scholar 

  44. Bjorklund A, Lindvall O. Self-repair in the brain. Nature 2000; 405(6789):892–3, 895.

    PubMed  CAS  Google Scholar 

  45. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature 2000; 407(6807):963–70.

    PubMed  CAS  Google Scholar 

  46. Reznikov K. [Incorporation of 3H-thymidine into glial cells of the parietal region and cells of the subependymal zone of two-week and adult mice under normal conditions and following brain injury]. Ontogenez 1975; 6(2):169–76.

    Google Scholar 

  47. Szele FG, Chesselet MF. Cortical lesions induce an increase in cell number and PSA-NCAM expression in the subventricular zone of adult rats. J Comp Neurol 1996; 368(3):439–54.

    PubMed  CAS  Google Scholar 

  48. Tzeng SF, Wu JP. Responses of microglia and neural progenitors to mechanical brain injury. Neuroreport 1999; 10(11):2287–92.

    PubMed  CAS  Google Scholar 

  49. Merzenich MM, Nelson RJ, Stryker MP et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984; 224(4):591–605.

    PubMed  CAS  Google Scholar 

  50. Kaas JH, Merzenich MM, Killackey HP. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 1983; 6:325–56.

    PubMed  CAS  Google Scholar 

  51. Wall PD, Egger MD. Formation of new connexions in adult rat brains after partial deafferentation. Nature 1971; 232(5312):542–5.

    PubMed  CAS  Google Scholar 

  52. Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 2002; 3:228–236.

    PubMed  CAS  Google Scholar 

  53. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 2000; 405(6789):951–5.

    PubMed  CAS  Google Scholar 

  54. Weiss S, Dunne C, Hewson J et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 1996; 16(23):7599–609.

    PubMed  CAS  Google Scholar 

  55. Shihabuddin LS, Ray J, Gage FH. FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 1997; 148(2):577–86.

    PubMed  CAS  Google Scholar 

  56. Yamamoto S, Yamamoto N, Kitamura T et al. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 2001; 172(1):115–27.

    PubMed  CAS  Google Scholar 

  57. Horner PJ, Power AE, Kempermann G et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000; 20(6):2218–28.

    PubMed  CAS  Google Scholar 

  58. Namiki J, Tator CH. Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 1999; 58(5):489–98.

    PubMed  CAS  Google Scholar 

  59. McTigue DM, Horner PJ, Stokes BT et al. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 1998; 18(14):5354–65.

    PubMed  CAS  Google Scholar 

  60. Weidner N, Ner A, Salimi N et al. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci USA 2001; 98(6):3513–8.

    PubMed  CAS  Google Scholar 

  61. Rubio F, Kokaia Z, Arco A et al. BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Ther 1999; 6(11):1851–66.

    PubMed  CAS  Google Scholar 

  62. Grill R, Murai K, Blesch A et al. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 1997; 17(14):5560–72.

    PubMed  CAS  Google Scholar 

  63. Liu Y, Kim D, Himes BT et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 1999; 19(11):4370–87.

    PubMed  CAS  Google Scholar 

  64. Himes BT, Liu Y, Solowska JM et al. Transplants of cells genetically modifed to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res 2001; 65(6):549–64.

    PubMed  CAS  Google Scholar 

  65. Kim DH, Gutin PH, Noble LJ et al. Treatment with genetically engineered fibroblasts producing NGF or BDNF can accelerate recovery from traumatic spinal cord injury in the adult rat. Neuroreport 1996; 7(13):2221–5.

    PubMed  CAS  Google Scholar 

  66. Teng YD, Lavik EB, Qu X et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002; 99(5):3024–3029.

    PubMed  CAS  Google Scholar 

  67. Benowitz LI, Goldberg DE, Madsen JR et al. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci USA 1999; 96(23):13486–90.

    PubMed  CAS  Google Scholar 

  68. Whittemore SR. Neuronal replacement strategies for spinal cord injury. J Neurotrauma 1999; 16(8):667–73.

    PubMed  CAS  Google Scholar 

  69. Shin JJ, Fricker-Gates RA, Perez FA et al. Transplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration. J Neurosci 2000; 20(19):7404–16.

    PubMed  CAS  Google Scholar 

  70. McDonald JW, Liu XZ, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999; 5(12):1410–2.

    PubMed  CAS  Google Scholar 

  71. Akiyama Y, Honmou O, Kato T et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 2001; 167(1):27–39.

    PubMed  CAS  Google Scholar 

  72. Groves AK, Barnett SC, Franklin RJ et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 1993; 362(6419):453–5.

    PubMed  CAS  Google Scholar 

  73. Reier PJ. The Neurobiology of Central Nervous System Trauma. New York: Oxford University Press, 1994.

    Google Scholar 

  74. Armstrong RJ, Barker RA. Neurodegeneration: a failure of neuroregeneration? Lancet 2001; 358(9288):1174–6.

    PubMed  CAS  Google Scholar 

  75. Shingo T, Sorokan ST, Shimazaki T et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 2001; 21(24):9733–43.

    PubMed  CAS  Google Scholar 

  76. Pencea V, Bingaman KD, Wiegand SJ et al. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 2001; 21(17):6706–17.

    PubMed  CAS  Google Scholar 

  77. Aberg MA, Aberg ND, Hedbacker H et al. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 2000; 20(8):2896–903.

    PubMed  CAS  Google Scholar 

  78. Wagner JP, Black IB, DiCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 1999; 19(14):6006–16.

    PubMed  CAS  Google Scholar 

  79. Kuhn HG, Winkler J, Kempermann G et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 1997; 17(15):5820–9.

    PubMed  CAS  Google Scholar 

  80. Fallon J, Reid S, Kinyamu R et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 2000; 97(26):14686–91.

    PubMed  CAS  Google Scholar 

  81. Bjorklund LM, Sanchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99(4):2344–9.

    PubMed  CAS  Google Scholar 

  82. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci 2000; 3(6):537–44.

    PubMed  CAS  Google Scholar 

  83. Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10):710–9.

    PubMed  CAS  Google Scholar 

  84. Wenning GK. Odin P, Morrish P et al. Short-and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997; 42(1):95–107.

    PubMed  CAS  Google Scholar 

  85. Lindvall O, Sawle G, Widner H et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 1994; 35(2):172–80.

    PubMed  CAS  Google Scholar 

  86. Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990; 247(4942):574–7.

    PubMed  CAS  Google Scholar 

  87. Dobrossy MD, Dunnett SB. The influence of environment and experience on neural grafts. Nat Rev Neurosci 2001; 2(12):871–9.

    PubMed  CAS  Google Scholar 

  88. Piccini P, Lindvall O, Bjorklund A et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 2000; 48(5):689–95.

    PubMed  CAS  Google Scholar 

  89. Hagell P, Schrag A, Piccini P et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 1999; 122(Pt 6):1121–32.

    PubMed  Google Scholar 

  90. Mazurova Y. New therapeutic approaches for the treatment of Huntington’s disease. Acta Medica (Hradec Kralove) 2001; 44(4):119–23.

    CAS  Google Scholar 

  91. Dunnett SB, Nathwani F, Bjorklund A. The integration and function of striatal grafts. Prog Brain Res 2000; 127:345–80.

    PubMed  CAS  Google Scholar 

  92. Kendall AL, Rayment FD, Torres EM et al. Functional integration of striatal allografts in a primate model of Huntington’s disease. Nat Med 1998; 4(6):727–9.

    PubMed  CAS  Google Scholar 

  93. Palfi S, Conde F, Riche D et al. Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat Med 1998; 4(8):963–6.

    PubMed  CAS  Google Scholar 

  94. Bachoud-Levi AC, Remy P, Nguyen JP et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000; 356(9246):1975–9.

    PubMed  CAS  Google Scholar 

  95. Svendsen CN, Smith AG. New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 1999; 22(8):357–64.

    PubMed  CAS  Google Scholar 

  96. Dietrich J, Easterday MC. Developing concepts in neural stem cells. Trends Neurosci 2002; 25(3):129–31.

    PubMed  CAS  Google Scholar 

  97. Dumas TC, Sapolsky RM. Gene therapy against neurological insults: sparing neurons versus sparing function. Trends Neurosci 2001; 24(12):695–700.

    PubMed  CAS  Google Scholar 

  98. Zurn AD, Widmer HR, Aebischer P. Sustained delivery of GDNF: towards a treatment for Parkinson’s disease. Brain Res Brain Res Rev 2001; 36(2–3):222–9.

    PubMed  CAS  Google Scholar 

  99. Hoffer B, Olson L. Treatment strategies for neurodegenerative diseases based on trophic factors and cell trasnplantation techniques. In: Mizuno Y YM, Calne DB, Horowski R et al, eds. Advances in Research on Neurodegeneration. Wien, New York: Springer Verlag, 1997:1–10.

    Google Scholar 

  100. Silani V, Braga M, Cardin V et al. The pathogenesis of ALS: implications for treatment strategies. Neurol Neurochir Pol 2001; 35(1 Suppl):25–39.

    PubMed  CAS  Google Scholar 

  101. Martin JB. Gene therapy and pharmacological treatment of inherited neurological disorders. Trends Biotechnol 1995; 13(1):28–35.

    PubMed  CAS  Google Scholar 

  102. Fisher LJ. Neural precursor cells: applications for the study and repair of the central nervous system. Neurobiol Dis 1997; 4(1):1–22.

    PubMed  CAS  Google Scholar 

  103. Reya T, Morrison SJ, Clarke MF et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859):105–11.

    PubMed  CAS  Google Scholar 

  104. Moe PJ, Holen A. High-dose methotrexate in childhood all. Pediatr Hematol Oncol 2000; 17(8):615–22.

    PubMed  CAS  Google Scholar 

  105. Rubnitz JE. Molecular diagnostics in the treatment of childhood acute lymphoblastic leukemia. J Biol Regul Homeost Agents 2000; 14(3):182–6.

    PubMed  CAS  Google Scholar 

  106. Alizadeh AA, Staudt LM. Genomic-scale gene expression profiling of normal and malignant immune cells. Curr Opin Immunol 2000; 12(2):219–25.

    PubMed  CAS  Google Scholar 

  107. Knuutila S, Teerenhovi L, Larramendy ML et al. Cell lineage involvement of recurrent chromosomal abnormalities in hematologic neoplasms. Genes Chromosomes Cancer 1994; 10(2):95–102.

    PubMed  CAS  Google Scholar 

  108. Nilsson L, Astrand-Grundstrom I, Arvidsson I et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 2000; 96(6):2012–21.

    PubMed  CAS  Google Scholar 

  109. Russell NH. Biology of acute leukaemia. Lancet 1997; 349(9045):118–22.

    PubMed  CAS  Google Scholar 

  110. McKay R. Stem cells in the central nervous system. Science 1997; 276:66–71.

    PubMed  CAS  Google Scholar 

  111. Temple S, Qian X. Vertebrate neural progenitor cells: subtypes and regulation. Current Opinion in Neurobiology 1996; 6:11–17.

    PubMed  CAS  Google Scholar 

  112. Reynolds BA, Tetzlaff W, Weiss S. A Mulitpotent EGF-Responsive Striatal Embryonic Progenitor Cell Produces Neurons and Astrocytes. J Neurosci 1992; 12(11):4565–4574.

    PubMed  CAS  Google Scholar 

  113. Vescovi A, Gritti A, Galli R et al. Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 1999; 16:689–693.

    PubMed  CAS  Google Scholar 

  114. Mayer-Proschel M, Kalyani AJ, Mujtaba T et al. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 1997; 19(4):773–85.

    PubMed  CAS  Google Scholar 

  115. Rao MS, Noble M, Mayer-Proschel M. A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA 1998; 95(7):3996–4001.

    PubMed  CAS  Google Scholar 

  116. Rao MS, Mayer-Proschel M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol 1997; 188(1):48–63.

    PubMed  CAS  Google Scholar 

  117. Kalyani A, Piper D, Mujitaba T et al. E-NCAM immunoreactive neuronal precursor cells differentiate into multiple neurotransmitter phenotypes. J Neurosci 1998; 18:7856–7868.

    PubMed  CAS  Google Scholar 

  118. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 1983; 303(5916):390–6.

    PubMed  CAS  Google Scholar 

  119. Noble M, Murray K. Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. Embo J 1984; 3(10):2243–7.

    PubMed  CAS  Google Scholar 

  120. Fok-Seang J, Miller HR. Astrocyte precursors in neonatal rat spinal cord cultures. J Neurosci 1992; 12:2751–2764.

    PubMed  CAS  Google Scholar 

  121. Fok-Seang J, Miller RH. Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord. J Neurosci Res 1994; 37:219–235.

    PubMed  CAS  Google Scholar 

  122. Seidman K, Teng A, Rosenkopf R et al. Isolation, cloning and characterization of a putative type-1 astrocyte cell line. Brain Res 1997; 753:18–26.

    PubMed  CAS  Google Scholar 

  123. Mi H, Barres BA. Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J Neurosci 1999; 19:1049–1061.

    PubMed  CAS  Google Scholar 

  124. Grinspan JB, Stern JL, Pustilnik SM et al. Cerebral white matter contains PDGF-responsive precursors to O-2A cells. J Neuroscience 1990; 10:1866–1873.

    CAS  Google Scholar 

  125. Palmer TD, Schwartz PH, Taupin P et al. Cell culture. Progenitor cells from human brain after death. Nature 2001; 411(6833):42–3.

    PubMed  CAS  Google Scholar 

  126. Laywell ED, Rakic P, Kukekov VG et al. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 2000; 97(25):13883–8.

    PubMed  CAS  Google Scholar 

  127. Roy NS, Wang S, Jiang L et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000; 6(3):271–7.

    PubMed  CAS  Google Scholar 

  128. Arsenijevic Y, Villemure JG, Brunet JF et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 2001; 170(1):48–62.

    PubMed  CAS  Google Scholar 

  129. Piper DR, Mujtaba T, Keyoung H et al. Identification and characterization of neuronal precursors and their progeny from human fetal tissue. J Neurosci Res 2001; 66(3):356–68.

    PubMed  CAS  Google Scholar 

  130. Reubinoff BE, Itsykson P, Turetsky T et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19(12):1134–40.

    PubMed  CAS  Google Scholar 

  131. Zhang SC, Wernig M, Duncan ID et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001; 19(12):1129–33.

    PubMed  CAS  Google Scholar 

  132. Shih CC, Weng Y, Mamelak A et al. Identification of a candidate human neurohematopoietic stem-cell population. Blood 2001; 98(8):2412–22.

    PubMed  CAS  Google Scholar 

  133. Scheffler B, Horn M, Blumcke I et al. Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 1999; 22(8):348–57.

    PubMed  CAS  Google Scholar 

  134. Parati EA, Bez A, Ponti D et al. Human neural stem cells express extra-neural markers. Brain Res 2002; 925(2):213–21.

    PubMed  CAS  Google Scholar 

  135. Price J, Williams BP. Neural stem cells. Curr Opin Neurobiol 2001; 11(5):564–7.

    PubMed  CAS  Google Scholar 

  136. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17:387–403.

    PubMed  CAS  Google Scholar 

  137. Krause DS, Theise ND, Collector MI et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105(3):369–77.

    PubMed  CAS  Google Scholar 

  138. Toma JG, Akhavan M, Fernandes KJ et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3(9):778–84.

    PubMed  CAS  Google Scholar 

  139. Noble M, Dietrich J. Intersections between neurobiology and oncology: tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci 2002; 25(2):103–7.

    PubMed  CAS  Google Scholar 

  140. Noble M. The oligodendrocyte-type-2 astrocyte lineage: in vitro and in vivo studies on development, tissue repair and neoplasia. In: Gage FH, Christen Y., eds. Isolation, characterization and utilization of CNS stem cells. Berlin, Heidelberg: Springer, 1997: 101–128.

    Google Scholar 

  141. Linskey ME. Developmental glial biology: the key to understanding glial tumors. Clin Neurosurg 2000; 47:46–71.

    PubMed  CAS  Google Scholar 

  142. Linskey ME. Glial ontogeny and glial neoplasia: the search for closure. J Neurooncol 1997; 34(1):5–22.

    PubMed  CAS  Google Scholar 

  143. Barnett SC, Robertson L, Graham D et al. Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells transformed with c-myc and H-ras form high-grade glioma after stereotactic injection into the rat brain. Carcinogenesis 1998; 19(9):1529–37.

    PubMed  CAS  Google Scholar 

  144. Holland EC, Celestino J, Dai C et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000; 25(1):55–7.

    PubMed  CAS  Google Scholar 

  145. Seyfried TN. Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspect Biol Med 2001; 44(2):263–82.

    PubMed  CAS  Google Scholar 

  146. Noble M, Gutowski N, Bevan K et al. From rodent glial precursor cell to human glial neoplasia in the oligodendrocyte-type-2 astrocyte lineage. Glia 1995; 15(3):222–30.

    PubMed  CAS  Google Scholar 

  147. Kashima T, Tiu SN, Merrill JE et al. Expression of oligodendrocyte-associated genes in cell lines derived from human gliomas and neuroblastomas. Cancer Res 1993; 53(1):170–5.

    PubMed  CAS  Google Scholar 

  148. Seyfried TN, Yu RK. Ganglioside GD3: structure, cellular distribution, and possible function. Mol Cell Biochem 1985; 68(1):3–10.

    PubMed  CAS  Google Scholar 

  149. Tohyama T, Lee VM, Rorke LB et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 1992; 66(3):303–13.

    PubMed  CAS  Google Scholar 

  150. Li J, Pearl DK, Pfeiffer SE et al. Patterns of reactivity with anti-glycolipid antibodies in human primary brain tumors. J Neurosci Res 1994; 39(2):148–58.

    PubMed  CAS  Google Scholar 

  151. Yang HY, Lieska N, Shao D et al. Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Mol Chem Neuropathol 1994; 21(2–3):155–76.

    PubMed  CAS  Google Scholar 

  152. Shoshan Y, Nishiyama A, Chang A et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 1999; 96(18):10361–6.

    PubMed  CAS  Google Scholar 

  153. Lu QR, Park JK, Noll E et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci USA 2001; 98(19):10851–6.

    PubMed  CAS  Google Scholar 

  154. Marie Y, Sanson M, Mokhtari K et al. OLIG2 as a specific marker of oligodendroglial tumour cells. Lancet 2001; 358(9278):298–300.

    PubMed  CAS  Google Scholar 

  155. Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415(6870):436–42.

    PubMed  CAS  Google Scholar 

  156. Van’t Veer LJ, De Jong D. The microarray way to tailored cancer treatment. Nat Med 2002; 8(1):13–4.

    Google Scholar 

  157. Armstrong SA, Staunton JE, Silverman LB et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30(1):41–7.

    PubMed  CAS  Google Scholar 

  158. Benedetti S, Pirola B, Pollo B et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6(4):447–50.

    PubMed  CAS  Google Scholar 

  159. Aboody KS, Brown A, Rainov NG et al. From the cover: neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97(23):12846–51.

    PubMed  CAS  Google Scholar 

  160. Berens ME, Giese A. “...those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1999; 1(3):208–19.

    PubMed  CAS  Google Scholar 

  161. Prados MD, Levin V. Biology and treatment of malignant glioma. Semin Oncol 2000; 27(3 Suppl 6):1–10.

    PubMed  CAS  Google Scholar 

  162. Noble M. Can neural stem cells be used to track down and destroy migratory brain tumor cells while also providing a means of repairing tumor-associated damage? Proc Natl Acad Sci USA 2000; 97(23):12393–5.

    PubMed  CAS  Google Scholar 

  163. Noble M. Can neural stem cells be used as therapeutic vehicles in the treatment of brain tumors? Nat Med 2000; 6(4):369–70.

    PubMed  CAS  Google Scholar 

  164. Lewin M, Carlesso N, Tung CH et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000; 18(4):410–4.

    PubMed  CAS  Google Scholar 

  165. Franklin RJ, Blaschuk KL, Bearchell MC et al. Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 1999; 10(18):3961–5.

    PubMed  CAS  Google Scholar 

  166. Bulte JW, Zhang S, van Gelderen P et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999; 96(26):15256–61.

    PubMed  CAS  Google Scholar 

  167. Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of radiotherapy and chemotherapy. J Neurol. 1998; 245:695–708.

    PubMed  CAS  Google Scholar 

  168. Grill J, Renaux VK, Bulteau C et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int. J Radiat Oncol Biol Phys 1999; 45:137–145.

    PubMed  CAS  Google Scholar 

  169. Schlegel U, Pels H, Oehring R et al. Neurologic sequelae of treatment of primary CNS lymphomas. J Neurooncol 1999; 43:277–286.

    PubMed  CAS  Google Scholar 

  170. Cetingul N, Aydinok Y, Kantar M et al. Neuropsychologic sequelae in the long-term survivors of childhood acute lymphoblastic leukemia. Pediatr. Hematol. Oncol 1999; 16:213–220.

    PubMed  CAS  Google Scholar 

  171. Stylopoulos LA, George AE, de Leon MJ et al. Longitudinal CT study of parenchymal brain changes in glioma survivors. AJNR Am J Neuroradiol 1988; 9(3):517–22.

    PubMed  CAS  Google Scholar 

  172. Riva D, Giorgi C. The neurodevelopmental price of survival in children with malignant brain tumours. Childs Nerv Syst 2000; 16(10–11):751–4.

    PubMed  CAS  Google Scholar 

  173. Waber DP, Tarbell NJ. Toxicity of CNS prophylaxis for childhood leukemia. Oncology (Huntingt) 1997; 11(2):259–64; discussion 264–5.

    PubMed  CAS  Google Scholar 

  174. Glauser TA, Packer RJ. Cognitive deficits in long-term survivors of childhood brain tumors. Childs Nerv Syst 1991; 7(1):2–12.

    PubMed  CAS  Google Scholar 

  175. Appleton RE, Farrell K, Zaide J et al. Decline in head growth and cognitive impairment in survivors of acute lymphoblastic leukaemia. Arch Dis Child 1990; 65(5):530–4.

    PubMed  CAS  Google Scholar 

  176. Peissner W, Kocher M, Treuer H et al. Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res Mol. Brain Res 1999; 71:61–68.

    PubMed  CAS  Google Scholar 

  177. Tada E, Parent JM, Lowenstein DH et al. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 2000; 99(1):33–41.

    PubMed  CAS  Google Scholar 

  178. Bellinzona M, Gobbel GT, Shinohara C et al. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci Lett 1996; 208:163–166.

    PubMed  CAS  Google Scholar 

  179. Li YQ, Wong CS. Apoptosis and its relationship with cell proliferation in the irradiated rat spinal cord. Int. J Radiat Biol 1998; 74:405–417.

    PubMed  CAS  Google Scholar 

  180. Vigliani MC, Duyckaerts C, Hauw JJ et al. Dementia following treatment of brain tumors with radiotherapy administered alone or in combination with nitrosourea-based chemotherapy: a clinical and pathological study. J Neurooncol 1999; 41:137–149.

    PubMed  CAS  Google Scholar 

  181. Hopewell JW, van der Kogel AJ. Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 1999; 33:265–75.

    PubMed  CAS  Google Scholar 

  182. Nutt CL, Noble M, Chambers AF et al. Differential expression of drug resistance genes and chemosensitivity in glial cell lineages correlate with differential response of oligodendrogliomas and astrocytomas to chemotherapy. Cancer Res 2000; 60(17):4812–8.

    PubMed  CAS  Google Scholar 

  183. Lassmann H. Classification of demyelinating diseases at the interface between etiology and pathogenesis. Curr Opin Neurol 2001; 14(3):253–8.

    PubMed  CAS  Google Scholar 

  184. McTigue DM, Popovich PG, Jakeman LB et al. Strategies for spinal cord injury repair. Prog Brain Res 2000; 128:3–8.

    PubMed  CAS  Google Scholar 

  185. Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 2000; 17(10):915–25.

    PubMed  CAS  Google Scholar 

  186. Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 1999; 22(2):119–24.

    PubMed  CAS  Google Scholar 

  187. Prineas JW, MacDonald WI. Demyelinating diseases. In: Graham DI, Lantos PL, eds. Greenfield’s neuropathology. 6th ed. London: Arnold, 1997:813–889.

    Google Scholar 

  188. Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 2001; 7(3):115–21.

    PubMed  CAS  Google Scholar 

  189. Kornek B, Storch MK, Weissert R et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000; 157(1):267–76.

    PubMed  CAS  Google Scholar 

  190. Bitsch A, Schuchardt J, Bunkowski S et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 2000; 123(Pt 6):1174–83.

    PubMed  Google Scholar 

  191. Ferguson B, Matyszak MK, Esiri MM et al. Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120(Pt 3):393–9.

    PubMed  Google Scholar 

  192. Duncan ID, Grever WE, Zhang SC. Repair of myelin disease: strategies and progress in animal models. Mol Med Today 1997; 3(12):554–61.

    PubMed  CAS  Google Scholar 

  193. Blakemore WF, Franklin RJ. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant 2000; 9(2):289–94.

    PubMed  CAS  Google Scholar 

  194. Blakemore WF, Olby NJ, Franklin RJ. The use of transplanted glial cells to reconstruct glial environments in the CNS. Brain Pathol 1995; 5(4):443–50.

    PubMed  CAS  Google Scholar 

  195. Brustle O, McKay RD. Neuronal progenitors as tools for cell replacement in the nervous system. Curr Opin Neurobiol 1996; 6(5):688–95.

    PubMed  CAS  Google Scholar 

  196. Cattaneo E, McKay R. Identifying and manipulating neuronal stem cells. Trends Neurosci 1991; 14(8):338–40.

    PubMed  CAS  Google Scholar 

  197. Duncan ID. Glial cell transplantation and remyelination of the central nervous system. Neuropathol Appl Neurobiol 1996; 22(2):87–100.

    PubMed  CAS  Google Scholar 

  198. Brustle O, Jones KN, Learish RD et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999; 285(5428):754–6.

    PubMed  CAS  Google Scholar 

  199. Rao MS, Mayer-Proschel M. Precursor cells for transplantation. Prog Brain Res 2000; 128:273–92.

    PubMed  CAS  Google Scholar 

  200. Prineas JW, Barnard RO, Kwon EE et al. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 1993; 33(2):137–51.

    PubMed  CAS  Google Scholar 

  201. Prineas JW, Kwon EE, Goldenberg PZ et al. Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab Invest 1989; 61(5):489–503.

    PubMed  CAS  Google Scholar 

  202. Ludwin SK. Remyelination in demyelinating diseases of the central nervous system. Crit Rev Neurobiol 1987; 3(1):1–28.

    PubMed  CAS  Google Scholar 

  203. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 1998; 18(2):601–9.

    PubMed  CAS  Google Scholar 

  204. Blakemore WF, Franklin, R.J.M., Noble, M. Glial cell transplantation and the repair of demyelinating lesions. In: Jessen KR, Richardson WD, eds. Glial cell development: Basic principles and relevance. Oxford: BIOS Scientific Publishers Ltd., 1996: 209–220.

    Google Scholar 

  205. Allen IV, Kirk, J. Demyelinating diseases. In: Adams JH, Duchen LW, eds. Greenfield’s neuropathology. New York: Oxford University Press, 1992: 447–520.

    Google Scholar 

  206. Raine CS. Demyelinating Diseases. In: Davis RL, Robertson DM, eds. Textbook of Neuropathology. Baltimore: Williams and Wilkins, 1991: 535–620.

    Google Scholar 

  207. Nait-Oumesmar B, Lachapelle F, Decker L et al. Do central nervous system axons remyelinate? Pathol Biol (Paris) 2000; 48(1):70–9.

    PubMed  CAS  Google Scholar 

  208. Decker L, Picard N, Lachapelle F et al. Neural precursors and demyelinating diseases. Prog Brain Res 2001; 132:175–84.

    PubMed  CAS  Google Scholar 

  209. Nait-Oumesmar B, Decker L, Lachapelle F et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 1999; 11(12):4357–66.

    PubMed  CAS  Google Scholar 

  210. Norton WT. Do oligodendrocytes divide? Neurochem Res 1996; 21(4):495–503.

    PubMed  CAS  Google Scholar 

  211. Carroll WM, Jennings AR, Ironside LJ. Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 1998; 121 (Pt 2):293–302.

    PubMed  Google Scholar 

  212. Keirstead HS, Blakemore WF. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol 1997; 56(11):1191–201.

    PubMed  CAS  Google Scholar 

  213. Ffrench-Constant C, Raff MC. Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 1986; 319(6053):499–502.

    PubMed  CAS  Google Scholar 

  214. Wolswijk G, Noble M. Identification of an adult-specific glial progenitor cell. Development 1989; 105(2):387–400.

    PubMed  CAS  Google Scholar 

  215. Gensert JM, Goldman JE. In vivo characterization of endogenous proliferating cells in adult rat subcortical white matter. Glia 1996; 17(1):39–51.

    PubMed  CAS  Google Scholar 

  216. Bergles DE, Roberts JD, Somogyi P et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 2000; 405(6783):187–91.

    PubMed  CAS  Google Scholar 

  217. Butt AM, Duncan A, Hornby MF et al. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 1999; 26(1):84–91.

    PubMed  CAS  Google Scholar 

  218. Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci 2001; 24(1):39–47.

    PubMed  CAS  Google Scholar 

  219. Dou CL, Levine JM. Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J Neurosci 1994; 14(12):7616–28.

    PubMed  CAS  Google Scholar 

  220. Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 1999; 160(2):333–47.

    PubMed  CAS  Google Scholar 

  221. Gogate N, Verma L, Zhou JM et al. Plasticity in the adult human oligodendrocyte lineage. J Neurosci 1994; 14(8):4571–87.

    PubMed  CAS  Google Scholar 

  222. Armstrong RC, Dorn HH, Kufta CV et al. Pre-oligodendrocytes from adult human CNS. J Neurosci 1992; 12(4):1538–47.

    PubMed  CAS  Google Scholar 

  223. Scolding NJ, Rayner PJ, Sussman J et al. A proliferative adult human oligodendrocyte progenitor. Neuroreport 1995; 6(3):441–5.

    PubMed  CAS  Google Scholar 

  224. Roy NS, Wang S, Harrison-Restelli C et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci 1999; 19(22):9986–95.

    PubMed  CAS  Google Scholar 

  225. McCarthy GF, Leblond CP. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with 3H-thymidine. J Comp Neurol 1988; 271(4):589–603.

    PubMed  CAS  Google Scholar 

  226. Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 1998; 37(3):413–28.

    PubMed  CAS  Google Scholar 

  227. Maeda Y, Solanky M, Menonna J et al. Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann Neurol 2001; 49(6):776–85.

    PubMed  CAS  Google Scholar 

  228. Scolding N, Franklin R, Stevens S et al. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 1998; 121 (Pt 12):2221–8.

    PubMed  Google Scholar 

  229. Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 1997; 19(1):197–203.

    PubMed  CAS  Google Scholar 

  230. O’Leary MT, Blakemore WF. Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J Neurosci Res 1997; 48(2):159–67.

    PubMed  CAS  Google Scholar 

  231. Franklin RJ, Bayley SA, Blakemore WF. Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol 1996; 137(2):263–76.

    PubMed  CAS  Google Scholar 

  232. Dubois-Dalcq M, Murray K. Why are growth factors important in oligodendrocyte physiology? Pathol Biol (Paris) 2000; 48(1):80–6.

    PubMed  CAS  Google Scholar 

  233. Hohlfeld R, Kerschensteiner M, Stadelmann C et al. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 2000; 107(2):161–6.

    PubMed  CAS  Google Scholar 

  234. Molina-Holgado E, Vela JM, Arevalo-Martin A et al. LPS/IFN-gamma cytotoxicity in oligodendroglial cells: role of nitric oxide and protection by the anti-inflammatory cytokine IL-10. Eur J Neurosci 2001; 13(3):493–502.

    PubMed  CAS  Google Scholar 

  235. Kil K, Zang YC, Yang D et al. T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis. J Neuroimmunol 1999; 98(2):201–7.

    PubMed  CAS  Google Scholar 

  236. Warrington AE, Asakura K, Bieber AJ et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci USA 2000; 97(12):6820–5.

    PubMed  CAS  Google Scholar 

  237. Browne TR, Holmes GL. Epilepsy. N Engl J Med 2001; 344(15):1145–51.

    PubMed  CAS  Google Scholar 

  238. Stefan H. Pathophysiology of human epilepsy: imaging and physiologic studies. Curr Opin Neurol 2000; 13(2):177–81.

    PubMed  CAS  Google Scholar 

  239. Hosford DA. Models of primary generalized epilepsy. Curr Opin Neurol 1995; 8(2):121–5.

    PubMed  CAS  Google Scholar 

  240. Brodie MJ, French JA. Management of epilepsy in adolescents and adults. Lancet 2000; 356(9226):323–9.

    PubMed  CAS  Google Scholar 

  241. Kalynchuk LE. Long-term amygdala kindling in rats as a model for the study of interictal emotionality in temporal lobe epilepsy. Neurosci Biobehav Rev 2000; 24(7):691–704.

    PubMed  CAS  Google Scholar 

  242. Sutula TP. Experimental models of temporal lobe epilepsy: new insights from the study of kindling and synaptic reorganization. Epilepsia 1990; 31(Suppl 3):S45–54.

    PubMed  Google Scholar 

  243. Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 1999; 36(2–3):189–204.

    PubMed  CAS  Google Scholar 

  244. Kupferberg H. Animal models used in the screening of antiepileptic drugs. Epilepsia 2001; 42(Suppl 4):7–12.

    PubMed  Google Scholar 

  245. Fisher RS. Animal models of the epilepsies. Brain Res Brain Res Rev 1989; 14(3):245–78.

    PubMed  CAS  Google Scholar 

  246. Golarai G, Greenwood AC, Feeney DM et al. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 2001; 21(21):8523–37.

    PubMed  CAS  Google Scholar 

  247. Whitaker WR, Faull RL, Dragunow M et al. Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus. Neuroscience 2001; 106(2):275–85.

    PubMed  CAS  Google Scholar 

  248. Hendriksen H, Datson NA, Ghijsen WE et al. Altered hippocampal gene expression prior to the onset of spontaneous seizures in the rat post-status epilepticus model. Eur J Neurosci 2001; 14(9):1475–84.

    PubMed  CAS  Google Scholar 

  249. Hughes PE, Alexi T, Walton M et al. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 1999; 57(4):421–50.

    PubMed  CAS  Google Scholar 

  250. Osawa M, Uemura S, Kimura H et al. Amygdala kindling develops without mossy fiber sprouting and hippocampal neuronal degeneration in rats. Psychiatry Clin Neurosci 2001; 55(6):549–57.

    PubMed  CAS  Google Scholar 

  251. Zhang LX, Smith MA, Li XL et al. Apoptosis of hippocampal neurons after amygdala kindled seizures. Brain Res Mol Brain Res 1998; 55(2):198–208.

    PubMed  CAS  Google Scholar 

  252. Thompson K, Holm AM, Schousboe A et al. Hippocampal stimulation produces neuronal death in the immature brain. Neuroscience 1998; 82(2):337–48.

    PubMed  CAS  Google Scholar 

  253. Sloviter RS, Dean E, Sollas AL et al. Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 1996; 366(3):516–33.

    PubMed  CAS  Google Scholar 

  254. Harding B, Thom M. Bilateral hippocampal granule cell dispersion: autopsy study of 3 infants. Neuropathol Appl Neurobiol 2001; 27(3):245–51.

    PubMed  CAS  Google Scholar 

  255. Briellmann RS, Newton MR, Wellard RM et al. Hippocampal sclerosis following brief generalized seizures in adulthood. Neurology 2001; 57(2):315–7.

    PubMed  CAS  Google Scholar 

  256. Fisher PD, Sperber EF, Moshe SL. Hippocampal sclerosis revisited. Brain Dev 1998; 20(8):563–73.

    PubMed  CAS  Google Scholar 

  257. Liu Z, Mikati M, Holmes GL. Mesial temporal sclerosis: pathogenesis and significance. Pediatr Neurol 1995; 12(1):5–16.

    PubMed  CAS  Google Scholar 

  258. Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994; 35(6):640–54.

    PubMed  CAS  Google Scholar 

  259. Swann JW, Al-Noori S, Jiang M et al. Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 2000; 10(5):617–25.

    PubMed  CAS  Google Scholar 

  260. Schauwecker PE, Ramirez JJ, Steward O. Genetic dissection of the signals that induce synaptic reorganization. Exp Neurol 2000; 161(1):139–52.

    PubMed  CAS  Google Scholar 

  261. Liu Z, Yang Y, Silveira DC et al. Consequences of recurrent seizures during early brain development. Neuroscience 1999; 92(4):1443–54.

    PubMed  CAS  Google Scholar 

  262. Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia 1999; 40(Suppl 1):S34–9; discussion S40–1.

    PubMed  Google Scholar 

  263. Ben-Ari Y. Cell death and synaptic reorganizations produced by seizures. Epilepsia 2001; 42(Suppl 3):5–7.

    PubMed  Google Scholar 

  264. Houser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 1990; 535(2):195–204.

    PubMed  CAS  Google Scholar 

  265. Lurton D, El Bahh B, Sundstrom L et al. Granule cell dispersion is correlated with early epileptic events in human temporal lobe epilepsy. J Neurol Sci 1998; 154(2):133–6.

    PubMed  CAS  Google Scholar 

  266. Houser CR. Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepsy Res Suppl 1992; 7:223–34.

    PubMed  CAS  Google Scholar 

  267. Gorter JA, van Vliet EA, Aronica E et al. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 2001; 13(4):657–69.

    PubMed  CAS  Google Scholar 

  268. Pierce JP, Milner TA. Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse 2001; 39(3):249–56.

    PubMed  CAS  Google Scholar 

  269. Pitkanen A, Nissinen, J, Lukasiuk K et al. Association between the density of mossy fiber sprouting and seizure frequency in experimental and human temporal lobe epilepsy. Epilepsia 2000; 41(Suppl 6):S24–9.

    PubMed  Google Scholar 

  270. Cantallops I, Routtenberg A. Kainic acid induction of mossy fiber sprouting: dependence on mouse strain. Hippocampus 2000; 10(3):269–73.

    PubMed  CAS  Google Scholar 

  271. Wenzel HJ, Woolley CS, Robbins CA et al. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus 2000; 10(3):244–60.

    PubMed  CAS  Google Scholar 

  272. Parent JM, Yu TW, Leibowitz RT et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997; 17(10):3727–38.

    PubMed  CAS  Google Scholar 

  273. Bengzon J, Kokaia Z, Elmer E et al. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 1997; 94(19):10432–7.

    PubMed  CAS  Google Scholar 

  274. Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 1998; 790(1–2):52–9.

    PubMed  CAS  Google Scholar 

  275. Nakagawa E, Aimi Y, Yasuhara O et al. Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia 2000; 41(1):10–8.

    PubMed  CAS  Google Scholar 

  276. Parent JM, Janumpalli S, McNamara JO et al. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci Lett 1998; 247(1):9–12.

    PubMed  CAS  Google Scholar 

  277. Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000; 20(16):6144–58.

    PubMed  CAS  Google Scholar 

  278. Scott BW, Wang S, Burnham WM et al. Kindling-induced neurogenesis in the dentate gyrus of the rat. Neurosci Lett 1998; 248(2):73–6.

    PubMed  CAS  Google Scholar 

  279. Van Der Wal EA, Gomez-Pinilla F, Cotman CW. Seizure-associated induction of basic fibroblast growth factor and its receptor in the rat brain. Neuroscience 1994; 60(2):311–23.

    Google Scholar 

  280. Humpel C, Wetmore C, Olson L. Regulation of brain-derived neurotrophic factor messenger RNA and protein at the cellular level in pentylenetetrazol-induced epileptic seizures. Neuroscience 1993; 53(4):909–18.

    PubMed  CAS  Google Scholar 

  281. Humpel C, Lippoldt A, Chadi G et al. Fast and widespread increase of basic fibroblast growth factor messenger RNA and protein in the forebrain after kainate-induced seizures. Neuroscience 1993; 57(4):913–22.

    PubMed  CAS  Google Scholar 

  282. Bugra K, Pollard H, Charton G et al. aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainate-induced seizures. Eur J Neurosci 1994; 6(1):58–66.

    PubMed  CAS  Google Scholar 

  283. Ballabriga J, Pozas E, Planas AM et al. bFGF and FGFR-3 immunoreactivity in the rat brain following systemic kainic acid administration at convulsant doses: localization of bFGF and FGFR-3 in reactive astrocytes, and FGFR-3 in reactive microglia. Brain Res 1997; 752(1–2):315–8.

    PubMed  CAS  Google Scholar 

  284. Yoshimura S, Takagi Y, Harada J et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 2001; 98(10):5874–9.

    PubMed  CAS  Google Scholar 

  285. Parent JM, Tada E, Fike JR et al. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 1999; 19(11):4508–19.

    PubMed  CAS  Google Scholar 

  286. Scott BW, Wojtowicz JM, Burnham WM. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol 2000; 165(2):231–6.

    PubMed  CAS  Google Scholar 

  287. Madsen TM, Treschow A, Bengzon J et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47(12):1043–9.

    PubMed  CAS  Google Scholar 

  288. Sankar R, Shin D, Liu H et al. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia 2000; 41(Suppl 6):S53–6.

    PubMed  Google Scholar 

  289. Blumcke I, Schewe JC, Normann S et al. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 2001; 11(3):311–21.

    PubMed  CAS  Google Scholar 

  290. Houser CR. Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv Neurol 1999; 79:743–61.

    PubMed  CAS  Google Scholar 

  291. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386(6624):493–5.

    PubMed  CAS  Google Scholar 

  292. Young D, Lawlor PA, Leone P et al. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 1999; 5(4):448–53.

    PubMed  CAS  Google Scholar 

  293. Kubova H, Moshe SL. Experimental models of epilepsy in young animals. J Child Neurol 1994; 9(Suppl 1):S3–11.

    PubMed  Google Scholar 

  294. Wasterlain CG, Shirasaka Y. Seizures, brain damage and brain development. Brain Dev 1994; 16(4):279–95.

    PubMed  CAS  Google Scholar 

  295. Holmes GL, Ben-Ari Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res 2001; 49(3):320–5.

    PubMed  CAS  Google Scholar 

  296. Haas KZ, Sperber EF, Opanashuk LA et al. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus 2001; 11(6):615–25.

    PubMed  CAS  Google Scholar 

  297. Lado FA, Sankar R, Lowenstein D et al. Age-dependent consequences of seizures: relationship to seizure frequency, brain damage, and circuitry reorganization. Ment Retard Dev Disabil Res Rev 2000; 6(4):242–52.

    PubMed  CAS  Google Scholar 

  298. Wasterlain CG, Plum F. Vulnerability of developing rat brain to electroconvulsive seizures. Arch Neurol 1973; 29(1):38–45.

    PubMed  CAS  Google Scholar 

  299. McCabe BK, Silveira DC, Cilio MR et al. Reduced neurogenesis after neonatal seizures. J Neurosci 2001; 21(6):2094–103.

    PubMed  CAS  Google Scholar 

  300. Hoch DB, Hill RA, Oas KH. Epiepsy and mental decline. Neurol Clin 1994; 12(1):101–13.

    PubMed  CAS  Google Scholar 

  301. Battaglia D, Rando T, Deodato F et al. Epileptic disorders with onset in the first year of life: neurological and cognitive outcome. Europ J Paediatr Neurol 1999; 3(3):95–103.

    CAS  Google Scholar 

  302. Koh S, Storey TW, Santos TC et al. Early-life seizures in rats increase susceptibility to seizure-induced brain injury in adulthood. Neurology 1999; 53(5):915–21.

    PubMed  CAS  Google Scholar 

  303. Holmes GL, Gairsa JL, Chevassus-Au-Louis N et al. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 1998; 44(6):845–57.

    PubMed  CAS  Google Scholar 

  304. Loscher W, Ebert U, Lehmann H et al. Seizure suppression in kindling epilepsy by grafts of fetal GABAergic neurons in rat substantia nigra. J Neurosci Res 1998; 51(2):196–209.

    PubMed  CAS  Google Scholar 

  305. Kokaia M, Cenci MA, Elmer E et al. Seizure development and noradrenaline release in kindling epilepsy after noradrenergic reinnervation of the subcortically deafferented hippocampus by superior cervical ganglion or fetal locus coeruleus grafts. Exp Neurol 1994; 130(2):351–61.

    PubMed  CAS  Google Scholar 

  306. Kokaia M, Aebischer P, Elmer E et al. Seizure suppression in kindling epilepsy by intracerebral implants of GABA-but not by noradrenaline-releasing polymer matrices. Exp Brain Res 1994; 100(3):385–94.

    PubMed  CAS  Google Scholar 

  307. Thompson K, Anantharam V, Behrstock S et al. Conditionally immortalized cell lines, engineered to produce and release GABA, modulate the development of behavioral seizures. Exp Neurol 2000; 161(2):481–9.

    PubMed  CAS  Google Scholar 

  308. Cole AJ. Is epilepsy a progressive disease? The neurobiological consequences of epilepsy. Epilepsia 2000; 41(Suppl 2):S13–22.

    PubMed  Google Scholar 

  309. Jankowsky JL, Patterson PH. The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 2001; 63(2):125–49.

    PubMed  CAS  Google Scholar 

  310. Jin K, Minami M, Lan JQ et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 2001; 98(8):4710–5.

    PubMed  CAS  Google Scholar 

  311. Kee NJ, Preston E, Wojtowicz JM. Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 2001; 136(3):313–20.

    PubMed  CAS  Google Scholar 

  312. Liu J, Solway K, Messing RO et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998; 18(19):7768–78.

    PubMed  CAS  Google Scholar 

  313. Iwai M, Hayashi T, Zhang WR et al. Induction of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in postischemic gerbil hippocampus mainly dissociated with neural stem cell proliferation. Brain Res 2001; 902(2):288–93.

    PubMed  CAS  Google Scholar 

  314. Takagi Y, Nozaki K, Takahashi J et al. Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res 1999; 831(1–2):283–7.

    PubMed  CAS  Google Scholar 

  315. Kitagawa K, Matsumoto M, Hori M. Protective and regenerative response endogenously induced in the ischemic brain. Can J Physiol Pharmacol 2001; 79(3):262–5.

    PubMed  CAS  Google Scholar 

  316. Jiang W, Gu W, Brannstrom T et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 2001; 32(5):1201–7.

    PubMed  CAS  Google Scholar 

  317. Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab 2000; 20(8):1166–73.

    PubMed  CAS  Google Scholar 

  318. Gould E, Reeves AJ, Graziano MS et al. Neurogenesis in the neocortex of adult primates. Science 1999; 286(5439):548–52.

    PubMed  CAS  Google Scholar 

  319. Bernabeu R, Sharp FR. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 2000; 20(12):1669–80.

    PubMed  CAS  Google Scholar 

  320. Arvidsson A, Kokaia Z, Lindvall O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 2001; 14(1):10–8.

    PubMed  CAS  Google Scholar 

  321. Westerberg E, Monaghan DT, Kalimo H et al. Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia. J Neurosci 1989; 9(3):798–805.

    PubMed  CAS  Google Scholar 

  322. Cameron HA, McEwen BS, Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995; 15(6):4687–92.

    PubMed  CAS  Google Scholar 

  323. Gould E, Cameron HA, McEwen BS. Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol 1994; 340(4):551–65.

    PubMed  CAS  Google Scholar 

  324. Gould E, McEwen BS, Tanapat P et al. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997; 17(7):2492–8.

    PubMed  CAS  Google Scholar 

  325. Larsson E, Lindvall O, Kokaia Z. Stereological assessment of vulnerability of immunocytochemically identified striatal and hippocampal neurons after global cerebral ischemia in rats. Brain Res 2001; 913(2):117–32.

    PubMed  CAS  Google Scholar 

  326. Mody I, Otis TS, Bragin A et al. GABAergic inhibition of granule cells and hilar neuronal synchrony following ischemia-induced hilar neuronal loss. Neuroscience 1995; 69(1):139–50.

    PubMed  CAS  Google Scholar 

  327. Sugimoto A, Shozuhara H, Kogure K et al. Exposure to sub-lethal ischemia failed to prevent subsequent ischemic death of dentate hilar neurons, as estimated by laminin immunohistochemistry. Brain Res 1993; 629(1):159–62.

    PubMed  CAS  Google Scholar 

  328. Li Y, Chopp M, Powers C. Granule cell apoptosis and protein expression in hippocampal dentate gyrus after forebrain ischemia in the rat. J Neurol Sci 1997; 150(2):93–102.

    PubMed  CAS  Google Scholar 

  329. Bering R, Draguhn A, Diemer NH et al. Ischemia changes the coexpression of somatostatin and neuropeptide Y in hippocampal interneurons. Exp Brain Res 1997; 115(3):423–9.

    PubMed  CAS  Google Scholar 

  330. Kawamata T, Dietrich WD, Schallert T et al. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci USA 1997; 94(15):8179–84.

    PubMed  CAS  Google Scholar 

  331. Endoh M, Pulsinelli WA, Wagner JA. Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Brain Res Mol Brain Res 1994; 22(1–4):76–88.

    PubMed  CAS  Google Scholar 

  332. Yagita Y, Kitagawa K, Ohtsuki T et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 2001; 32(8):1890–6.

    PubMed  CAS  Google Scholar 

  333. Levison SW, Rothstein RP, Romanko MJ et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells. Dev Neurosci 2001; 23(3):234–47.

    PubMed  CAS  Google Scholar 

  334. Back SA, Han BH, Luo NL et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 2002; 22(2):455–63.

    PubMed  CAS  Google Scholar 

  335. Park KI. Transplantation of neural stem cells: cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med J 2000; 41(6):825–35.

    PubMed  CAS  Google Scholar 

  336. Fukunaga A, Uchida K, Hara K et al. Differentiation and angiogenesis of central nervous system stem cells implanted with mesenchyme into ischemic rat brain. Cell Transplant 1999; 8(4):435–41.

    PubMed  CAS  Google Scholar 

  337. Sinden JD, Stroemer P, Grigoryan G et al. Functional repair with neural stem cells. Novartis Found Symp 2000; 231:270–83; discussion 283–8, 302–6.

    PubMed  CAS  Google Scholar 

  338. Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res 2000; 127:461–76.

    PubMed  CAS  Google Scholar 

  339. Hodges H, Nelson A, Virley D et al. Cognitive deficits induced by global cerebral ischaemia: prospects for transplant therapy. Pharmacol Biochem Behav 1997; 56(4):763–80.

    PubMed  CAS  Google Scholar 

  340. Kondziolka D, Wechsler L, Goldstein S et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000; 55(4):565–9.

    PubMed  CAS  Google Scholar 

  341. Semkova I, Krieglstein J. Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res Brain Res Rev 1999; 30(2):176–88.

    PubMed  CAS  Google Scholar 

  342. Manji HK, Moore GJ, Chen G. Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry 2000; 48(8):740–54.

    PubMed  CAS  Google Scholar 

  343. Duman RS, Malberg J, Nakagawa S. Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther 2001; 299(2):401–7.

    PubMed  CAS  Google Scholar 

  344. Blows WT. The neurobiology of antidepressants. J Neurosci Nurs 2000; 32(3):177–80.

    PubMed  CAS  Google Scholar 

  345. Malberg JE, Eisch AJ, Nestler EJ et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20(24):9104–10.

    PubMed  CAS  Google Scholar 

  346. Kempermann G, van Praag H, Gage FH. Activity-dependent regulation of neuronal plasticity and self repair. Prog Brain Res 2000; 127:35–48.

    PubMed  CAS  Google Scholar 

  347. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2(3):266–70.

    PubMed  Google Scholar 

  348. Vaidya VA, Duman RS. Depression-emerging insights from neurobiology. Br Med Bull 2001; 57:61–79.

    PubMed  CAS  Google Scholar 

  349. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25(6):836–44.

    PubMed  CAS  Google Scholar 

  350. Chen G, Rajkowska G, Du F et al. Enhancement of hippocampal neurogenesis by lithium. J Neurochem 2000; 75(4):1729–34.

    PubMed  CAS  Google Scholar 

  351. Czeh B, Michaelis T, Watanabe T et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001; 98(22):12796–801.

    PubMed  CAS  Google Scholar 

  352. Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46(9):1181–91.

    PubMed  CAS  Google Scholar 

  353. Finamore TL, Seybold KS, Noble M et al. Contributions of hippocampal cellular damage and NMDA receptor dysfunction to behavioral markers of schizophrenia. Int J Neurosci 2001; 109(1–2):61–70.

    PubMed  CAS  Google Scholar 

  354. Weinberger DR. Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 1999; 45(4):395–402.

    PubMed  CAS  Google Scholar 

  355. Port RL, Seybold KS. Hippocampal synaptic plasticity as a biological substrate underlying episodic psychosis. Biol Psychiatry 1995; 37(5):318–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Dietrich, J., Kempermann, G. (2006). Role of Endogenous Neural Stem Cells in Neurological Disease and Brain Repair. In: Bähr, M. (eds) Brain Repair. Advances in Experimental Medicine and Biology, vol 557. Springer, Boston, MA. https://doi.org/10.1007/0-387-30128-3_12

Download citation

Publish with us

Policies and ethics