Skip to main content

Cell Death in the Nervous System

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 557))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14:453–501.

    PubMed  CAS  Google Scholar 

  2. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96:245–254.

    PubMed  CAS  Google Scholar 

  3. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999; 59:1701s–1706s.

    PubMed  CAS  Google Scholar 

  4. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basis biological phenomen with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257.

    PubMed  CAS  Google Scholar 

  5. Häcker G. The morphology of apoptosis Cell Tiss Res 2000; 301:5–17.

    Google Scholar 

  6. Shi Y. Mechanisms of caspases activation and inhibition during apoptotsis. Mol Cell 2002; 9:459–470.

    PubMed  CAS  Google Scholar 

  7. Majino G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146:3–15.

    Google Scholar 

  8. Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991; 7:663–698.

    PubMed  CAS  Google Scholar 

  9. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 1987; 237:1154–1162.

    PubMed  CAS  Google Scholar 

  10. Thoenen H, Bandtlow C, Heumann R. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 1987; 109:145–178.

    PubMed  CAS  Google Scholar 

  11. Landmesser L, Pilar G. Interactions between neurons and their targets during in vivo synaptogenesis. Fed Proc 1987; 37:2016–2022.

    Google Scholar 

  12. Landmesser L. The relationship of intermuscular nerve branching and synaptogenesis to motoneuron survival. J Neurobiol 1992; 23:1131–1139.

    PubMed  CAS  Google Scholar 

  13. Sohal GS. The role of target size in neuronal survival. J Neurobiol 1992; 23:1124–1130.

    PubMed  CAS  Google Scholar 

  14. Hollyday M, Hamburger V. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol 1976; 170:311 320.

    PubMed  Google Scholar 

  15. Pettmann B, Henderson CE. Neuron cell death. Neuron 1998; 20:633–647.

    PubMed  CAS  Google Scholar 

  16. De la Rosa EJ, de Pablo F. Cell death in early neural development: beyond the neurotrophic theory. TINS 2000; 23:454–457.

    PubMed  Google Scholar 

  17. Ranger AM, Malynn BA, Korsmeyer SJ. Mouse models of cell death. Nature Genetics 2001; 28:113–118.

    PubMed  CAS  Google Scholar 

  18. Kuida K, Zheng TS, Na TQ et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384:368–372.

    PubMed  CAS  Google Scholar 

  19. Kuida K, Haydar TF, Kuan CY et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998; 94:325–337.

    PubMed  CAS  Google Scholar 

  20. Cecconi F, Gruss P. Apaf1 in developmental apoptosis and cancer: how many ways to die. CMLS 2001; 58:1688–1697.

    PubMed  CAS  Google Scholar 

  21. Glückmann A. Cell death in normal vertebrate ontogeny. Biol Rev 1951; 26:59–86.

    Google Scholar 

  22. Jacobson MD, Weil M, Raff M. Programmed cell death in animal development. Cell 1997; 88:347–54.

    PubMed  CAS  Google Scholar 

  23. Barres BA, Hart IK, Coles HS et al. Cell death and control of survival in the oligodendrocyte lineage. Cell 1992; 70:31–46.

    PubMed  CAS  Google Scholar 

  24. Grinspan JB, Marchionni MA, Reeves M et al. Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J Neurosci 1996; 16:6107–6118.

    PubMed  CAS  Google Scholar 

  25. Trachtenberg JT, Thompson WJ. Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 1996; 379:174–177.

    PubMed  CAS  Google Scholar 

  26. Gu C, Casaccia-Bonnefil P, Srinivasan A et al. Oligodendrocyte apoptosis mediated by caspases activation. J Neurosci 1999; 19:3043–3049.

    PubMed  CAS  Google Scholar 

  27. Winseck AK, Caldero J, Ciutat D et al. In Vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. J Neurosci 2002; 22:4509–4521.

    PubMed  CAS  Google Scholar 

  28. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999; 17:2941–1953.

    PubMed  CAS  Google Scholar 

  29. Sulston JE, Schierenberg E, White JG et al. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100:64–119.

    PubMed  CAS  Google Scholar 

  30. Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 1998; 14:410–416.

    PubMed  CAS  Google Scholar 

  31. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281:1312–1316.

    PubMed  CAS  Google Scholar 

  32. Nicholson DW, Thornberry NA. Caspases—killer proteases. Trends Biochem.. Sci. 1997; 22:299–306.

    PubMed  CAS  Google Scholar 

  33. Hofmann K, Bucher P, Tschopp J. The CARD domain—a new apoptotic signaling motif. Trends Biochem Sci 1997; 22:155–156.

    PubMed  CAS  Google Scholar 

  34. Chou JJ, Matsuo H, Duan H, Wagner R. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 1998; 94:171–180.

    PubMed  CAS  Google Scholar 

  35. Adams JM, Cory S. The bcl-2 protein family: arbiters of cell survival. Science 1998; 281:1322–1326.

    PubMed  CAS  Google Scholar 

  36. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13:1899–1911.

    PubMed  CAS  Google Scholar 

  37. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivowith a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74:609–619.

    PubMed  CAS  Google Scholar 

  38. Nguyen M, Millar DG, Yong VW et al. Targeting of Bcl-2 to mitochondrial outer membrane by COOH-terminal signal sequence. J Biol Chem 1993; 268:25265–25268.

    PubMed  CAS  Google Scholar 

  39. Hockenberry D, Nunez G, Milliman C et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348:334–336.

    Google Scholar 

  40. Hsu YT, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci USA 1997; 94:3668–3672.

    PubMed  CAS  Google Scholar 

  41. Gross A, Jockel J, Wei MC et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17:3878–3885.

    PubMed  CAS  Google Scholar 

  42. Liu X, Kim CN, Yang J et al. Induction of apoptotic program in cell-free extreacts: requirement for dATP and cytochrome c. Cell 1996; 86:147–157.

    PubMed  CAS  Google Scholar 

  43. Kluck RM, Bossy-Wetzel E, Green DR et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997; 275:1132–1136.

    PubMed  CAS  Google Scholar 

  44. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspases activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998; 17:37–49.

    PubMed  CAS  Google Scholar 

  45. Li P, Nijhawan D, Budihardjo I et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspases-9 complex initiates an apoptotic protease cascade. Cell 1997; 91:479–489.

    PubMed  CAS  Google Scholar 

  46. Zou H, Henzel WJ, Liu X et al. Apaf-1, a human homolog to C. elegans CED-4 participates in cyrochrome c-dependent activation of caspases-3. Cell 1997; 90:405–413.

    PubMed  CAS  Google Scholar 

  47. Sanna MG, da Silva Correia J, Ducrey O et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspases inhibition. Mol Cell Biol 2002; 22:1754–1766.

    PubMed  CAS  Google Scholar 

  48. Roy N, Mahadevan MS, McLean M et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995; 80:167–178.

    PubMed  CAS  Google Scholar 

  49. Shin S, Sung BJ, Cho YS et al. An apoptotic protein human surviving is a direct inhibitor of caspases-3 and caspases-7. Biochemistry 2001; 40:1117–1123.

    PubMed  CAS  Google Scholar 

  50. Tamm I, Wang Y, Sausville DA et al. IAP-family protein surviving inhibits caspases activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998; 58:5315–5320.

    PubMed  CAS  Google Scholar 

  51. Wienseck AK, Caldero J, Ciutat D et al. In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. J Neurosci 2002; 22:4509–4521.

    Google Scholar 

  52. McCarthy NJ, Whyte MK, Gilbert CS, et al. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 1997; 136:215–227.

    PubMed  CAS  Google Scholar 

  53. Joza N, Susin SA, Daugas E et al. Essential role of mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001; 410:549–554.

    PubMed  CAS  Google Scholar 

  54. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281:1305–1308.

    PubMed  CAS  Google Scholar 

  55. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76:959–962.

    PubMed  CAS  Google Scholar 

  56. Gruss HJ, Dower SK. Tumor necrosis factor logand superfamily: involvement in the pathology of malignant lymphomas. Blood 1995; 85:3378–3404.

    PubMed  CAS  Google Scholar 

  57. Tartaglia LA, Ayres TM, Wong GH et al. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993; 74:845–853.

    PubMed  CAS  Google Scholar 

  58. Nagata S. Apoptosis by death factor. Cell 1997; 88:355–365.

    PubMed  CAS  Google Scholar 

  59. Huang B, Eberstadt M, Olejniczak ET et al. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996; 384:638–641.

    PubMed  CAS  Google Scholar 

  60. Boldin MP, Goncharov TM, Goltsev YV et al. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996; 85:803–815.

    PubMed  CAS  Google Scholar 

  61. Muzio M, Chinnaiyan AM, Kischkel FC et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85:817–827.

    PubMed  CAS  Google Scholar 

  62. Muzio M, Stockwell BR, Stennicke HR et al. An induced proximity model for caspases-8 activation. J Biol Chem 1998; 273:2926–2930.

    PubMed  CAS  Google Scholar 

  63. Liepinsh E, Ilag LI, Otting G et al. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 1997; 16:4999–5005.

    PubMed  CAS  Google Scholar 

  64. Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 1996; 383:166–168.

    PubMed  CAS  Google Scholar 

  65. Naumann T, Casademunt E, Hollerbach E et al. Complete deletion of the neurtrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci 2002; 22:2409–2418.

    PubMed  CAS  Google Scholar 

  66. Miller FD, Kaplan DR. Neurotrophin signaling pathways regulating neuronal apoptosis. CMLS 2001; 58:1045–1053.

    PubMed  CAS  Google Scholar 

  67. Chao MV, Bothwell M. Neurotrophins: to cleave or not to cleave. Neuron 2002; 33:9–12.

    PubMed  CAS  Google Scholar 

  68. Casademunt E, Carter BD, Benzel I et al. The zinc finger protein NRIF interacts with the neurotrophin receptor p75NTR and participates in programmed cell death. EMBO J 1999; 21:6050–6061.

    Google Scholar 

  69. Frade JM, Barde YA. Genetic evidence for cell deathmediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 1999; 126:683–690.

    PubMed  CAS  Google Scholar 

  70. Furuta Y, Piston DW, Hogan BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997; 124:2203–2212.

    PubMed  CAS  Google Scholar 

  71. Graham A, Koentges G, Lumsden A. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol Cell Neurosci 1996; 8:76–83.

    CAS  Google Scholar 

  72. Krieglstein K, Richter S, Farkas L et al. Reduction of endogenous transforming growth factor beta prevents ontogenetic neuron death. Nature Neuroscience 2000; 3:1085–1091.

    PubMed  CAS  Google Scholar 

  73. Dünker N, Schuster N, Krieglstein K. Transforming Growth Factor Beta Modulates Programmed Cell Death in the Retina of the Developing Chick Embryo. Development 2001; 128:1933–1942.

    PubMed  Google Scholar 

  74. Parkinson DB, Dong Z, Bunting H et al. Transforming growth factor β (TGF-β) mediates Schwann cell death in vitro and in vivo: examination of c-jun activation, interactions with survival signals, and the relationship of TGF-β-mediated death to Schwann cell differentiation. J Neurosci 2001; 21:8572–8585.

    PubMed  CAS  Google Scholar 

  75. Yu C, Takeda M, Soliven B. Regulation of cell cycle proteins by TNF-alpha and TGF-beta in cells of oligodendroglial lineage. J Neuroimmunol 2000; 108:2–10.

    PubMed  CAS  Google Scholar 

  76. Schuster N, Bender H, Philippi A et al. TGF-β induces cell death in the oligodendroglial cell line OLI-neu. Glia 2002; 40:95–108.

    PubMed  Google Scholar 

  77. Schuster N, Bender H, Roessler O et al. TGF-β and TNF-α cooperate to induce apoptosis in the oligodendroglial cell line OLI-neu. J Neurosci Res 2003; 73(3):324–33.

    PubMed  CAS  Google Scholar 

  78. Hagimoto N, Kuwano K, Inoshima I et al. TGF-β1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol 2002; 168:6470–6478.

    PubMed  CAS  Google Scholar 

  79. Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 2002; 307:1–14.

    PubMed  CAS  Google Scholar 

  80. Honig LS, Rosenberg RN. Apoptosis and neurologic disease. Am J Med 2000; 108:317–330.

    PubMed  CAS  Google Scholar 

  81. Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tiss Res 2000; 301:173–187.

    CAS  Google Scholar 

  82. Springer JE, Nottingham SE, McEwen ML et al. Caspase-3 apoptotic signaling following injury to the central nervous system. Clin Chem Lab Med 2001; 39:299–307.

    PubMed  CAS  Google Scholar 

  83. Dikranian K, Ishimaru MJ, Tenkova T et al. Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 2001; 8:359–379.

    PubMed  CAS  Google Scholar 

  84. Jellinger KA. Cell death mechanisms in neurodegeneration. J Cell Mol Med 2001; 5:1–17.

    PubMed  CAS  Google Scholar 

  85. Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999; 45:421–429.

    PubMed  CAS  Google Scholar 

  86. Kugler S, Straten G, Kreppel F. The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ 2000; 7:815–824.

    PubMed  CAS  Google Scholar 

  87. Pender MP, Rist MJ. Apoptosis of inflammatory cells in immune control of the nervous system: role of glia. Glia 2001; 36:137–144.

    PubMed  CAS  Google Scholar 

  88. Zipp F, Krammer PH, Weller M. Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 1999; 20:550–554.

    PubMed  CAS  Google Scholar 

  89. Higami Y, Shimokawa I. Apoptosis in the aging process. Cell Tiss Res 2000; 301:125–132.

    CAS  Google Scholar 

  90. Motoyama N, Wang F, Roth KA et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995; 267:1506–1510.

    PubMed  CAS  Google Scholar 

  91. Knudson CM, Tung KS, Tourtellotte WG et al. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270:96–99.

    PubMed  CAS  Google Scholar 

  92. Lindsten T, Ross Aj, King A et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissue. Mol Cell 2000; 6:1389–1399.

    PubMed  CAS  Google Scholar 

  93. Cecconi F, Alvarezbolado G, Meyer BI et al. Apaf1 (Ced-4 homolog) regulates programmed cell death in mammalian development. Cell 1998; 94:727–737.

    PubMed  CAS  Google Scholar 

  94. Yoshida H, Kong YY, Yoshida R et al. Apaf1 is required for mitochondrial pathways of apoptosis and barin development. Cell 1998; 94:739–750.

    PubMed  CAS  Google Scholar 

  95. Honarpour N, Du C, Richardson JA et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev Biol 2000; 218:248–258.

    PubMed  CAS  Google Scholar 

  96. Hakem R, Hakem A, Duncan GS et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998; 94:339–352.

    PubMed  CAS  Google Scholar 

  97. Baker SJ, Reddy EP. Modulation of life and death by the TNF receptor superfamily. Oncogene 1998; 17:3261–3270.

    PubMed  Google Scholar 

  98. Brojatsch J, Naughton J, Rolls MM. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leucosis-sarcoma viruses and mediates apoptosis. Cell 1996; 87:845–855.

    PubMed  CAS  Google Scholar 

  99. Chinnaiyan AM, O’Rourke K, Yu GL et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 1996; 274:990–992.

    PubMed  CAS  Google Scholar 

  100. Kitson J, Raven T, Jiang YP et al. A death-domain-containing receptor that mediates apoptosis. Nature 1996; 384:371–375.

    Google Scholar 

  101. Chicheportiche Y, Bourdon PR, Xu H et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997; 272:32401–32410.

    PubMed  CAS  Google Scholar 

  102. Marsters SA, Sheridan JP, Pitti RM et al. Identification of a ligand for the death-domain-containing receptor Apo3. Curr Biol 1998; 8:525–528.

    PubMed  CAS  Google Scholar 

  103. Pan G, Ni J, Wei YF et al. An antagonist decoy receptor and a death domain-containg receptor for TRAIL. Science 1997; 277:815–818.

    PubMed  CAS  Google Scholar 

  104. Wiley SR, Schooley K, Smolak PJ et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3:673–682.

    PubMed  CAS  Google Scholar 

  105. Pitti RM, Marsters SA, Ruppert S et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271:12687–12690.

    PubMed  CAS  Google Scholar 

  106. Marsters SA, Pitti RM, Donahue CJ et al. Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr Biol 1996; 6:750–752.

    PubMed  CAS  Google Scholar 

  107. Pan G, O’Rourke K, Chinnaiyan AM. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276,111–113.

    PubMed  CAS  Google Scholar 

  108. Sheridan JP, Marsters SA, Pitti RM et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277:818–821.

    PubMed  CAS  Google Scholar 

  109. Walczak H, Degli-Esposti MA, Johnson RS et al. TRAIL-Ra: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997; 16:5386–5397.

    PubMed  CAS  Google Scholar 

  110. Wu GS, Burns TF, McDonald ER III et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997; 17:141–143.

    PubMed  CAS  Google Scholar 

  111. Chaudhary PM, Eby M, Jasmin A et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Innumity 1997; 7:821–830.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Krieglstein, K. (2006). Cell Death in the Nervous System. In: Bähr, M. (eds) Brain Repair. Advances in Experimental Medicine and Biology, vol 557. Springer, Boston, MA. https://doi.org/10.1007/0-387-30128-3_1

Download citation

Publish with us

Policies and ethics